opencv学习之(三)-LBP算法的研究及其实现

本文详细介绍了LBP(Local Binary Pattern)算法的基本思想、数学定义及其在纹理分类中的应用。通过3*3邻域的像素对比,生成LBP码,用于描述图像细节。此外,还讨论了扩展的LBP(圆形LBP)方法,用于处理尺度变化,并提供了OpenCV实现LBP算法的代码示例。在应用中需要注意,LBP算法仅适用于灰度图像,并提供了解决显示不完整LBP纹理特征问题的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,原始LBP算法

LBP的基本思想是对图像的像素和它局部周围像素进行对比后的结果进行求和。把这个像素作为中心,对相邻像素进行阈值比较。如果中心像素的亮度大于等于他的相邻像素,把他标记为1,否则标记为0。你会用二进制数字来表示每个像素,比如11001111。因此,由于周围相邻8个像素,你最终可能获取2^8个可能组合,被称为局部二值模式,有时被称为LBP码。第一个在文献中描述的LBP算子实际使用的是3*3的邻域

33

一个更加正式的LBP操作可以被定义为

                     34

其中35 是中心像素,亮度是36 ;而 37则是相邻像素的亮度。s是一个符号函数:

        38

这种描述方法使得你可以很好的捕捉到图像中的细节。实际上,研究者们可以用它在纹理分类上得到最先进的水平。正如刚才描述的方法被提出后,固定的近邻区域对于尺度变化的编码失效。所以,使用一个变量的扩展方法,在文献

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值