有关多尺度

小目标检测面临特征丢失和定位困难的问题,多尺度学习成为提升其性能的关键。文章介绍了使用不同大小卷积核、空洞卷积、可变卷积以及图像金字塔等方法获取多尺度信息。SSD算法利用浅层和深层特征检测不同大小的目标,而FPN进一步整合了多尺度信息。这些技术有效解决了小目标检测中的挑战。
摘要由CSDN通过智能技术生成

(多尺度学习可以注意一下)

小目标与常规目标相比可利用的像素较少, 难以提取到较好的特征, 而且随着网络层数的增加, 小目标的特征信息与位置信息也逐渐丢失, 难以被网络检测。这些特性导致小目标同时需要深层语义信息与浅层表征信息, 而多尺度学习将这两种相结合, 是一种提升小目标检测性能的有效策略。

一种是使用不同大小的卷积核通过不同的感受野大小来获取不同尺度的信息, 但这种方法计算成本很高, 而且感受野的尺度范围有限, Simonyan 和 Zisserman[13]提出使用多个小卷积核代替大卷积核具备巨大优势后, 使用不同大小卷积核的方法逐渐被弃用。之后, Yu等[37]提出的空洞卷积和 Dai等[38]提出的可变卷积又为这种通过不同感受野大小获取不同尺度信息的方法开拓了新的思路。另一种来自于图像处理领域的思路——图像金字塔[39], 通过输入不同尺度的图像, 对不同尺度大小的目标进行检测, 这种方法在早期的目标检测中有所应用[40‑41](见图 2 (a) ) 。但是,基于图像金字塔训练卷积神经网络模型对计算机算力和内存都有极高的要求。近些年来, 图像金字塔在实际研究应用中较少被使用, 仅有文献 [42‑43] 等方法针对数据集目标尺度差异过大等问题而使用

https://mp.weixin.qq.com/s/a7_JAiBdCTlGGAtNLy4a5A   各种卷积总结,注意这种可替换卷积

目标检测中的经典网络如 Fast R‑CNN[24]、 Faster R‑CNN[44]、 SPPNet[45]和 R‑FCN[46]等大多只是利用了深度神经网络的最后层来进行预测。然而, 由于空间和细节特征信息的丢失, 难以在深层特征图中检测小目标。在深度神经网络中, 浅层的感受野更小, 语义信息弱, 上下文信息缺乏, 但是可以获得更多空间和细节特征信息。从这一思路出发, Liu 等[47]提出一种多尺度目标检测算法 SSD (Single shot multibox detector) , 利用较浅层的特征图来检测较小的目标, 而利用较深层的特征图来检测较大的目标, 如图 2 (b) 所示。Cai等[48]针对小目标信息少, 难以匹配常规网络的问题, 提出统一多尺度深度卷积神经网络, 通过使用反卷积层来提高特征图的分辨率, 在减少内存和计算成本的同时显著提升了小目标的检测性能

 译文:

图2所示。多尺度特征学习的七个范例。(a)使用图像金字塔构建特征金字塔速度较慢,因为特征是在每个图像尺度上独立计算的。(b)像Faster RCNN这样的检测系统只使用单一尺度特征(最后一层转换层的输出)进行更快的检测。(c)一个替代特征图像金字塔的方法是从CNN预测每个金字塔特征层次。(d)是指对由多个特征生成的单一特征图进行预测。(e)特征金字塔网络(FPN)集成了(b)、(c)和(c)的结构

以上为小目标检测研究进展 部分笔记

 

 https://blog.csdn.net/Gentleman_Qin/article/details/84350496

YOLOv3——引入:FPN+多尺度检测 (目标检测)(one-stage)(深度学习)(CVPR 2018)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clark-dj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值