机器学习与深度学习系列连载(NTU-Machine Learning, cs229, cs231n, cs224n, cs294):欢迎进入机器学习的世界

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dukuku5038/article/details/82253966

欢迎进入机器学习的世界

本教程是根据台湾大学李弘毅老师的课程机器学习课程,斯坦福大学CS229CS231NCS224NCS20i、伦敦大学学院 ([UCL-Course])(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)课程,翻译、总结、提炼,将零星的知识点、算法进行串接,并加入个人的理解,形成机器学习基础理论、图像处理、自然语言处理、强化学习、对抗学习的整体知识框架的入门、提高教程。

在本教程最开始的地方,首先忠心感谢这些高水平课程,本人是经过反复观看(至少十次)、思考、编码,才获得较浅层次领悟(本教程中也会引用这些课程的经典内容、图片、代码,引用的时候我也会具体注明)。
这里写图片描述

1.编写目的:

  • 突破语言障碍:机器学习、深度学习核心课程、算法、论文都是英文。机器学习爱好者可能在语言上望而却步,而内容全面、高水平的中文教程相对较少。
  • 内容全面:各类机器学习中文学习笔记比较多,但是只是针对某个算法或者某门课程(方向),整体上将机器学习理论、图像、自然语言处理、强化学习、对抗网络算法和最新成果进行串联的中文教程较少。
  • 通俗易懂:用“最通俗的语言、最少的数学公式”,带领徘徊在机器学习门口的同学们,入门、提升、掌握机器学习基础理论、掌握深度学习的核心理念、算法`。
    ##2.读者要求:
    建议学习本教程的同学具备一定的高等数学、概率论、线性代数的知识和掌握Python语言。

2.学习路径:

本教程一共分为五大部分,估计在50篇博文左右(每周一更或者两更):

  1. 强化学习简介
  2. 马尔科夫决策过程 MDP
  3. 动态规划寻找最优策略
  4. 不基于模型的预测(蒙特卡洛方法MC、时序差分TD)
  5. 不基于模型的控制(SARSA、Q-Learning)
  6. 价值函数的近似表示
  7. 策略梯度
  8. 整合学习与规划 (Alpha Go 基本原理)
  9. 探索与利用
  10. 深度强化学习
  11. 深度强化学习- Q learning的算法剖析
  12. 深度强化学习- Q learning进阶: Double DQN和 Dulling DQN
  13. 深度强化学习-策略梯度与OpenAI的当家算法:PPO(1)
  14. 深度强化学习-策略梯度与OpenAI的当家算法:PPO(2)
  15. 深度强化学习- Actor-Critic的集大成者:A3C
  16. 深度强化学习- Pathwise Derivative策略梯度
  17. 深度强化学习- 稀疏奖励该怎么办? Sparse Reward
  18. 深度强化学习-模仿学习 Imitation Learning
  • 第四部分:对抗网络(已经完成)
  1. 对抗网络GAN(一) 对抗网络介绍 GAN Introduction
  2. 对抗网络GAN(二) 对抗网络 GAN背后的理论
  3. 对抗网络GAN (三) 对抗网络 Conditional GAN (CGAN)
  4. 对抗网络GAN (四) 对抗网络 Cycle GAN
  5. 对抗网络GAN (五) 对抗网络 Wasserstein GAN
  6. 对抗网络GAN (六) 对抗网络 (EBGAN,Info GAN,Bi GAN,VAE-GAN, Seq2Seq GAN)
  7. 对抗网络GAN (七) 对抗网络应用:NLP对话生成
  8. 对抗网络GAN (八) 对抗网络 (Unsupervised Conditional Sequence Generation)
  9. 对抗网络GAN (九) 对抗网络 (RankGAN + GAN家族总结)
  • 第五部分:深度学习框架(待完成)
  1. TensorFlow
  2. Pytorch
展开阅读全文

没有更多推荐了,返回首页