RNN及LSTM的matlab实现

RNN以及LSTM的Matlab代码

 
转载自新浪博客:http://blog.sina.com.cn/s/blog_a5fdbf010102w7y8.html#cmt_3541649
最近一致在研究RNN,RNN网络有很多种类型,我主要是对LSTM这种网络比较感兴趣,之前看了Trask的博客(https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/),他给出了基本的RNN的Python代码,我将其用Matlab实现了。此外,在此基础上,我还是实现了LSTM的Matlab版本,但是有一点要说明的是,RNN的实验结果比较好,但是LSTM的结果却不怎么好,我有两方面的怀疑,第一个是LSTM并不适合本实验中的例子;第二就是本人实现的LSTM网络有问题,如果是这样,希望大家帮助我指出来(貌似我感觉原理没有问题)

下面首先给出RNN的Matlab代码,里面有些地方我进行了注释:
% implementation of RNN 
clc
clear
close all
%% training dataset generation
binary_dim = 8;

largest_number = 2^binary_dim-1;
binary = cell(largest_number,1);
int2binary = cell(largest_number,1);
for i = 1:largest_number+1
    binary{i} = dec2bin(i-1, 8);
    int2binary{i} = binary{i};
end

%% input variables
alpha = 0.1;
input_dim = 2;
hidden_dim = 16;
output_dim = 1;

%% initialize neural network weights
synapse_0 = 2*rand(input_dim,hidden_dim) - 1;
synapse_1 = 2*rand(hidden_dim,output_dim) - 1;
synapse_h = 2*rand(hidden_dim,hidden_dim) - 1;

synapse_0_update = zeros(size(synapse_0));
synapse_1_update = zeros(size(synapse_1));
synapse_h_update = zeros(size(synapse_h));

%% train logic
for j = 0:19999
    % generate a simple addition problem (a + b = c)
    a_int = randi(round(largest_number/2)); % int version
    a = int2binary{a_int+1}; % binary encoding
    
    b_int = randi(floor(largest_number/2)); % int version
    b = int2binary{b_int+1}; % binary encoding
    
    % true answer
    c_int = a_int + b_int;
    c = int2binary{c_int+1};
    
    % where we'll store our best guess (binary encoded)
    d = zeros(size(c));
    
    if length(d)<8
        pause;
    end
    
    overallError = 0;
    
    layer_2_deltas = [];
    layer_1_values = [];
    layer_1_values = [layer_1_values; zeros(1, hidden_dim)];
    
    % 开始对一个序列进行处理,搞清楚一个东西,一个LSTM单元的输出其实就是隐含层
    for position = 0:binary_dim-1
        X = [a(binary_dim - position)-'0' b(binary_dim - position)-'0'];   % X 是 input
        y = [c(binary_dim - position)-'0']';                               % Y 是label,用来计算最后误差
        
        % 这里是RNN,因此隐含层比较简单
        % X ------------------------> input
        % sunapse_0 ----------------> U_i
        % layer_1_values(end, :) ---> previous hidden layer (S(t-1))
        % synapse_h ----------------> W_i
        % layer_1 ------------------> new hidden layer (S(t))
        layer_1 = sigmoid(X*synapse_0 + layer_1_values(end, :)*synapse_h);
        
        % layer_1 ------------------> hidden layer (S(t))
        % layer_2 ------------------> 最终的输出结果,其维度应该与 label (Y) 的维度是一致的
        % 这里的 sigmoid 其实就是一个变换,将 hidden layer (size: 1 x 16) 变换为 1 x 1
        % 有写时候,如果输入与输出不匹配的话,使可以使用 softmax 进行变化的
        % output layer (new binary representation)
        layer_2 = sigmoid(layer_1*synapse_1);
        
        % 计算误差,根据误差进行反向传播
        % layer_2_error ------------> 此次(第 position+1 次的误差)
        % l 是真实结果
        % layer_2 是输出结果
        % layer_2_deltas 输出层的变化结果,使用了反向传播,见那个求导(输出层的输入是 layer_2,那就对输入求导即可,然后乘以误差就可以得到输出的diff)
        % did we miss?... if so, by how much?
        layer_2_error = y - layer_2;
        layer_2_deltas = [layer_2_deltas; layer_2_error*sigmoid_output_to_derivative(layer_2)];
        
        % 总体的误差(误差有正有负,用绝对值)
        overallError = overallError + abs(layer_2_error(1));
        
        % decode estimate so we can print it out
        % 就是记录此位置的输出,用于显示结果
        d(binary_dim - position) = round(layer_2(1));
        
        % 记录下此次的隐含层 (S(t))
        % store hidden layer so we can use it in the next timestep
        layer_1_values = [layer_1_values; layer_1];
    end
    
    % 计算隐含层的diff,用于求参数的变化,并用来更新参数,还是每一个timestep来进行计算
    future_layer_1_delta = zeros(1, hidden_dim);
    
    % 开始进行反向传播,计算 hidden_layer 的diff,以及参数的 diff
    for position = 0:binary_dim-1
        % 因为是通过输入得到隐含层,因此这里还是需要用到输入的
        % a -> (operation) -> y, x_diff = derivative(x) * y_diff
        % 注意这里从最后开始往前推
        X = [a(position+1)-'0' b(position+1)-'0'];
        % layer_1 -----------------> 表示隐含层 hidden_layer (S(t))
        % prev_layer_1 ------------> (S(t-1))
        layer_1 = layer_1_values(end-position, :);
        prev_layer_1 = layer_1_values(end-position-1, :);
        
        % layer_2_delta -----------> 就是隐含层的diff
        % hidden_layer_diff,根据这个可以推算输入的diff以及上一个隐含层的diff
        % error at output layer
        layer_2_delta = layer_2_deltas(end-position, :);
        % 这个地方的 hidden_layer 来自两个方面,因为 hidden_layer -> next timestep, hidden_layer -> output,
        % 因此其反向传播也是两方面
        % error at hidden layer
        layer_1_delta = (future_layer_1_delta*(synapse_h') + layer_2_delta*(synapse_1')) ...
                        .* sigmoid_output_to_derivative(layer_1);
        
        % let's update all our weights so we can try again
        synapse_1_update = synapse_1_update + (layer_1')*(layer_2_delta);
        synapse_h_update = synapse_h_update + (prev_layer_1')*(layer_1_delta);
        synapse_0_update = synapse_0_update + (X')*(layer_1_delta);
        
        future_layer_1_delta = layer_1_delta;
    end
    
    synapse_0 = synapse_0 + synapse_0_update * alpha;
    synapse_1 = synapse_1 + synapse_1_update * alpha;
    synapse_h = synapse_h + synapse_h_update * alpha;
    
    synapse_0_update = synapse_0_update * 0;
    synapse_1_update = synapse_1_update * 0;
    synapse_h_update = synapse_h_update * 0;
    
    if(mod(j,1000) == 0)
        err = sprintf('Error:%s\n', num2str(overallError)); fprintf(err);
        d = bin2dec(num2str(d));
        pred = sprintf('Pred:%s\n',dec2bin(d,8)); fprintf(pred);
        Tru = sprintf('True:%s\n', num2str(c)); fprintf(Tru);
        out = 0;
        size(c)
        sep = sprintf('-------------\n'); fprintf(sep);
    end
    
end


接下来就是LSTM的Matlab代码,我也进行了注释,用英文注释的,也比较容易懂:
% implementation of LSTM
clc
clear
close all

%% training dataset generation
binary_dim     = 8;

largest_number = 2^binary_dim - 1;
binary         = cell(largest_number, 1);

for i = 1:largest_number + 1
    binary{i}      = dec2bin(i-1, binary_dim);
    int2binary{i}  = binary{i};
end

%% input variables
alpha      = 0.1;
input_dim  = 2;
hidden_dim = 32;
output_dim = 1;

%% initialize neural network weights
% in_gate     = sigmoid(X(t) * U_i + H(t-1) * W_i)    ------- (1)
U_i = 2 * rand(input_dim, hidden_dim) - 1;
W_i = 2 * rand(hidden_dim, hidden_dim) - 1;
U_i_update = zeros(size(U_i));
W_i_update = zeros(size(W_i));

% forget_gate = sigmoid(X(t) * U_f + H(t-1) * W_f)    ------- (2)
U_f = 2 * rand(input_dim, hidden_dim) - 1;
W_f = 2 * rand(hidden_dim, hidden_dim) - 1;
U_f_update = zeros(size(U_f));
W_f_update = zeros(size(W_f));

% out_gate    = sigmoid(X(t) * U_o + H(t-1) * W_o)    ------- (3)
U_o = 2 * rand(input_dim, hidden_dim) - 1;
W_o = 2 * rand(hidden_dim, hidden_dim) - 1;
U_o_update = zeros(size(U_o));
W_o_update = zeros(size(W_o));

% g_gate      = tanh(X(t) * U_g + H(t-1) * W_g)       ------- (4)
U_g = 2 * rand(input_dim, hidden_dim) - 1;
W_g = 2 * rand(hidden_dim, hidden_dim) - 1;
U_g_update = zeros(size(U_g));
W_g_update = zeros(size(W_g));

out_para = 2 * rand(hidden_dim, output_dim) - 1;
out_para_update = zeros(size(out_para));
% C(t) = C(t-1) .* forget_gate + g_gate .* in_gate    ------- (5)
% S(t) = tanh(C(t)) .* out_gate                       ------- (6)
% Out  = sigmoid(S(t) * out_para)                     ------- (7)
% Note: Equations (1)-(6) are cores of LSTM in forward, and equation (7) is
% used to transfer hiddent layer to predicted output, i.e., the output layer.
% (Sometimes you can use softmax for equation (7))

%% train 
iter = 99999; % training iterations
for j = 1:iter
    % generate a simple addition problem (a + b = c)
    a_int = randi(round(largest_number/2));   % int version
    a     = int2binary{a_int+1};              % binary encoding
    
    b_int = randi(floor(largest_number/2));   % int version
    b     = int2binary{b_int+1};              % binary encoding
    
    % true answer
    c_int = a_int + b_int;                    % int version
    c     = int2binary{c_int+1};              % binary encoding
    
    % where we'll store our best guess (binary encoded)
    d     = zeros(size(c));
    if length(d)<8
        pause;
    end
    
    % total error
    overallError = 0;
    
    % difference in output layer, i.e., (target - out)
    output_deltas = [];
    
    % values of hidden layer, i.e., S(t)
    hidden_layer_values = [];
    cell_gate_values    = [];
    % initialize S(0) as a zero-vector
    hidden_layer_values = [hidden_layer_values; zeros(1, hidden_dim)];
    cell_gate_values    = [cell_gate_values; zeros(1, hidden_dim)];
    
    % initialize memory gate
    % hidden layer
    H = [];
    H = [H; zeros(1, hidden_dim)];
    % cell gate
    C = [];
    C = [C; zeros(1, hidden_dim)];
    % in gate
    I = [];
    % forget gate
    F = [];
    % out gate
    O = [];
    % g gate
    G = [];
    
    % start to process a sequence, i.e., a forward pass
    % Note: the output of a LSTM cell is the hidden_layer, and you need to 
    % transfer it to predicted output
    for position = 0:binary_dim-1
        % X ------> input, size: 1 x input_dim
        X = [a(binary_dim - position)-'0' b(binary_dim - position)-'0'];
        
        % y ------> label, size: 1 x output_dim
        y = [c(binary_dim - position)-'0']';
        
        % use equations (1)-(7) in a forward pass. here we do not use bias
        in_gate     = sigmoid(X * U_i + H(end, :) * W_i);  % equation (1)
        forget_gate = sigmoid(X * U_f + H(end, :) * W_f);  % equation (2)
        out_gate    = sigmoid(X * U_o + H(end, :) * W_o);  % equation (3)
        g_gate      = tan_h(X * U_g + H(end, :) * W_g);    % equation (4)
        C_t         = C(end, :) .* forget_gate + g_gate .* in_gate;    % equation (5)
        H_t         = tan_h(C_t) .* out_gate;                          % equation (6)
        
        % store these memory gates
        I = [I; in_gate];
        F = [F; forget_gate];
        O = [O; out_gate];
        G = [G; g_gate];
        C = [C; C_t];
        H = [H; H_t];
        
        % compute predict output
        pred_out = sigmoid(H_t * out_para);
        
        % compute error in output layer
        output_error = y - pred_out;
        
        % compute difference in output layer using derivative
        % output_diff = output_error * sigmoid_output_to_derivative(pred_out);
        output_deltas = [output_deltas; output_error];
        
        % compute total error
        % note that if the size of pred_out or target is 1 x n or m x n,
        % you should use other approach to compute error. here the dimension 
        % of pred_out is 1 x 1
        overallError = overallError + abs(output_error(1));
        
        % decode estimate so we can print it out
        d(binary_dim - position) = round(pred_out);
    end
    
    % from the last LSTM cell, you need a initial hidden layer difference
    future_H_diff = zeros(1, hidden_dim);
    
    % stare back-propagation, i.e., a backward pass
    % the goal is to compute differences and use them to update weights
    % start from the last LSTM cell
    for position = 0:binary_dim-1
        X = [a(position+1)-'0' b(position+1)-'0'];
        
        % hidden layer
        H_t = H(end-position, :);         % H(t)
        % previous hidden layer
        H_t_1 = H(end-position-1, :);     % H(t-1)
        C_t = C(end-position, :);         % C(t)
        C_t_1 = C(end-position-1, :);     % C(t-1)
        O_t = O(end-position, :);
        F_t = F(end-position, :);
        G_t = G(end-position, :);
        I_t = I(end-position, :);
        
        % output layer difference
        output_diff = output_deltas(end-position, :);
        
        % hidden layer difference
        % note that here we consider one hidden layer is input to both
        % output layer and next LSTM cell. Thus its difference also comes
        % from two sources. In some other method, only one source is taken
        % into consideration.
        % use the equation: delta(l) = (delta(l+1) * W(l+1)) .* f'(z) to
        % compute difference in previous layers. look for more about the
        % proof at http://neuralnetworksanddeeplearning.com/chap2.html
%         H_t_diff = (future_H_diff * (W_i' + W_o' + W_f' + W_g') + output_diff * out_para') ...
%                    .* sigmoid_output_to_derivative(H_t);

%         H_t_diff = output_diff * (out_para') .* sigmoid_output_to_derivative(H_t);
        H_t_diff = output_diff * (out_para') .* sigmoid_output_to_derivative(H_t);
        
%         out_para_diff = output_diff * (H_t) * sigmoid_output_to_derivative(out_para);
        out_para_diff =  (H_t') * output_diff;

        % out_gate diference
        O_t_diff = H_t_diff .* tan_h(C_t) .* sigmoid_output_to_derivative(O_t);
        
        % C_t difference
        C_t_diff = H_t_diff .* O_t .* tan_h_output_to_derivative(C_t);
        
%         % C(t-1) difference
%         C_t_1_diff = C_t_diff .* F_t;
        
        % forget_gate_diffeence
        F_t_diff = C_t_diff .* C_t_1 .* sigmoid_output_to_derivative(F_t);
        
        % in_gate difference
        I_t_diff = C_t_diff .* G_t .* sigmoid_output_to_derivative(I_t);
        
        % g_gate difference
        G_t_diff = C_t_diff .* I_t .* tan_h_output_to_derivative(G_t);
        
        % differences of U_i and W_i
        U_i_diff =  X' * I_t_diff .* sigmoid_output_to_derivative(U_i);
        W_i_diff =  (H_t_1)' * I_t_diff .* sigmoid_output_to_derivative(W_i);
        
        % differences of U_o and W_o
        U_o_diff = X' * O_t_diff .* sigmoid_output_to_derivative(U_o);
        W_o_diff = (H_t_1)' * O_t_diff .* sigmoid_output_to_derivative(W_o);
        
        % differences of U_o and W_o
        U_f_diff = X' * F_t_diff .* sigmoid_output_to_derivative(U_f);
        W_f_diff = (H_t_1)' * F_t_diff .* sigmoid_output_to_derivative(W_f);
        
        % differences of U_o and W_o
        U_g_diff = X' * G_t_diff .* tan_h_output_to_derivative(U_g);
        W_g_diff = (H_t_1)' * G_t_diff .* tan_h_output_to_derivative(W_g);
        
        % update
        U_i_update = U_i_update + U_i_diff;
        W_i_update = W_i_update + W_i_diff;
        U_o_update = U_o_update + U_o_diff;
        W_o_update = W_o_update + W_o_diff;
        U_f_update = U_f_update + U_f_diff;
        W_f_update = W_f_update + W_f_diff;
        U_g_update = U_g_update + U_g_diff;
        W_g_update = W_g_update + W_g_diff;
        out_para_update = out_para_update + out_para_diff;
    end
    
    U_i = U_i + U_i_update * alpha; 
    W_i = W_i + W_i_update * alpha;
    U_o = U_o + U_o_update * alpha; 
    W_o = W_o + W_o_update * alpha;
    U_f = U_f + U_f_update * alpha; 
    W_f = W_f + W_f_update * alpha;
    U_g = U_g + U_g_update * alpha; 
    W_g = W_g + W_g_update * alpha;
    out_para = out_para + out_para_update * alpha;
    
    U_i_update = U_i_update * 0; 
    W_i_update = W_i_update * 0;
    U_o_update = U_o_update * 0; 
    W_o_update = W_o_update * 0;
    U_f_update = U_f_update * 0; 
    W_f_update = W_f_update * 0;
    U_g_update = U_g_update * 0; 
    W_g_update = W_g_update * 0;
    out_para_update = out_para_update * 0;
    
    if(mod(j,1000) == 0)
        err = sprintf('Error:%s\n', num2str(overallError)); fprintf(err);
        d = bin2dec(num2str(d));
        pred = sprintf('Pred:%s\n',dec2bin(d,8)); fprintf(pred);
        Tru = sprintf('True:%s\n', num2str(c)); fprintf(Tru);
        out = 0;
        sep = sprintf('-------------\n'); fprintf(sep);
    end
end

我找到了这篇博客里引用的那个大神的博客的中文翻译版:转载自https://blog.csdn.net/zzukun/article/details/49968129#0-tsina-1-23578-397232819ff9a47a7b7e80a40613cfe1

0. 前言

本文翻译自博客: iamtrask.github.io ,这次翻译已经获得trask本人的同意与支持,在此特别感谢trask。本文属于作者一边学习一边翻译的作品,所以在用词、理论方面难免会出现很多错误,假如您发现错误或者不合适的地方,可以给我留言,谢谢!

1. 概要

我的最佳学习法就是通过玩具代码,一边调试一边学习理论。这篇博客通过一个非常简单的Python玩具代码来讲解递归神经网络。

那么依旧是废话少说,放‘码’过来!

[python]  view plain  copy
  1. import copy, numpy as np  
  2. np.random.seed(0)  
  3.   
  4. # compute sigmoid nonlinearity  
  5. def sigmoid(x):  
  6.     output = 1/(1+np.exp(-x))  
  7.     return output  
  8.   
  9. # convert output of sigmoid function to its derivative  
  10. def sigmoid_output_to_derivative(output):  
  11.     return output*(1-output)  
  12.   
  13.   
  14. # training dataset generation  
  15. int2binary = {}  
  16. binary_dim = 8  
  17.   
  18. largest_number = pow(2,binary_dim)  
  19. binary = np.unpackbits(  
  20.     np.array([range(largest_number)],dtype=np.uint8).T,axis=1)  
  21. for i in range(largest_number):  
  22.     int2binary[i] = binary[i]  
  23.   
  24.   
  25. # input variables  
  26. alpha = 0.1  
  27. input_dim = 2  
  28. hidden_dim = 16  
  29. output_dim = 1  
  30.   
  31.   
  32. # initialize neural network weights  
  33. synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1  
  34. synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1  
  35. synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1  
  36.   
  37. synapse_0_update = np.zeros_like(synapse_0)  
  38. synapse_1_update = np.zeros_like(synapse_1)  
  39. synapse_h_update = np.zeros_like(synapse_h)  
  40.   
  41. # training logic  
  42. for j in range(10000):  
  43.       
  44.     # generate a simple addition problem (a + b = c)  
  45.     a_int = np.random.randint(largest_number/2# int version  
  46.     a = int2binary[a_int] # binary encoding  
  47.   
  48.     b_int = np.random.randint(largest_number/2# int version  
  49.     b = int2binary[b_int] # binary encoding  
  50.   
  51.     # true answer  
  52.     c_int = a_int + b_int  
  53.     c = int2binary[c_int]  
  54.       
  55.     # where we'll store our best guess (binary encoded)  
  56.     d = np.zeros_like(c)  
  57.   
  58.     overallError = 0  
  59.       
  60.     layer_2_deltas = list()  
  61.     layer_1_values = list()  
  62.     layer_1_values.append(np.zeros(hidden_dim))  
  63.       
  64.     # moving along the positions in the binary encoding  
  65.     for position in range(binary_dim):  
  66.           
  67.         # generate input and output  
  68.         X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])  
  69.         y = np.array([[c[binary_dim - position - 1]]]).T  
  70.   
  71.         # hidden layer (input ~+ prev_hidden)  
  72.         layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))  
  73.   
  74.         # output layer (new binary representation)  
  75.         layer_2 = sigmoid(np.dot(layer_1,synapse_1))  
  76.   
  77.         # did we miss?... if so by how much?  
  78.         layer_2_error = y - layer_2  
  79.         layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))  
  80.         overallError += np.abs(layer_2_error[0])  
  81.       
  82.         # decode estimate so we can print it out  
  83.         d[binary_dim - position - 1] = np.round(layer_2[0][0])  
  84.           
  85.         # store hidden layer so we can use it in the next timestep  
  86.         layer_1_values.append(copy.deepcopy(layer_1))  
  87.       
  88.     future_layer_1_delta = np.zeros(hidden_dim)  
  89.       
  90.     for position in range(binary_dim):  
  91.           
  92.         X = np.array([[a[position],b[position]]])  
  93.         layer_1 = layer_1_values[-position-1]  
  94.         prev_layer_1 = layer_1_values[-position-2]  
  95.           
  96.         # error at output layer  
  97.         layer_2_delta = layer_2_deltas[-position-1]  
  98.         # error at hidden layer  
  99.         layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + \  
  100.             layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)  
  101.         # let's update all our weights so we can try again  
  102.         synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)  
  103.         synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)  
  104.         synapse_0_update += X.T.dot(layer_1_delta)  
  105.           
  106.         future_layer_1_delta = layer_1_delta  
  107.       
  108.   
  109.     synapse_0 += synapse_0_update * alpha  
  110.     synapse_1 += synapse_1_update * alpha  
  111.     synapse_h += synapse_h_update * alpha      
  112.   
  113.     synapse_0_update *= 0  
  114.     synapse_1_update *= 0  
  115.     synapse_h_update *= 0  
  116.       
  117.     # print out progress  
  118.     if(j % 1000 == 0):  
  119.         print "Error:" + str(overallError)  
  120.         print "Pred:" + str(d)  
  121.         print "True:" + str(c)  
  122.         out = 0  
  123.         for index,x in enumerate(reversed(d)):  
  124.             out += x*pow(2,index)  
  125.         print str(a_int) + " + " + str(b_int) + " = " + str(out)  
  126.         print "------------"  



运行输出:

Error:[ 3.45638663]
Pred:[0 0 0 0 0 0 0 1]
True:[0 1 0 0 0 1 0 1]
9 + 60 = 1
------------
Error:[ 3.63389116]
Pred:[1 1 1 1 1 1 1 1]
True:[0 0 1 1 1 1 1 1]
28 + 35 = 255
------------
Error:[ 3.91366595]
Pred:[0 1 0 0 1 0 0 0]
True:[1 0 1 0 0 0 0 0]
116 + 44 = 72
------------
Error:[ 3.72191702]
Pred:[1 1 0 1 1 1 1 1]
True:[0 1 0 0 1 1 0 1]
4 + 73 = 223
------------
Error:[ 3.5852713]
Pred:[0 0 0 0 1 0 0 0]
True:[0 1 0 1 0 0 1 0]
71 + 11 = 8
------------
Error:[ 2.53352328]
Pred:[1 0 1 0 0 0 1 0]
True:[1 1 0 0 0 0 1 0]
81 + 113 = 162
------------
Error:[ 0.57691441]
Pred:[0 1 0 1 0 0 0 1]
True:[0 1 0 1 0 0 0 1]
81 + 0 = 81
------------
Error:[ 1.42589952]
Pred:[1 0 0 0 0 0 0 1]
True:[1 0 0 0 0 0 0 1]
4 + 125 = 129
------------
Error:[ 0.47477457]
Pred:[0 0 1 1 1 0 0 0]
True:[0 0 1 1 1 0 0 0]
39 + 17 = 56
------------
Error:[ 0.21595037]
Pred:[0 0 0 0 1 1 1 0]
True:[0 0 0 0 1 1 1 0]
11 + 3 = 14
------------

第一部分:什么是神经元记忆?

正向的背一边字母表……你能做到,对吧?

倒着背一遍字母表……唔……也许有点难。


那么试试你熟悉的一首歌词?……为什么正常顺序回忆的时候比倒着回忆更简单呢?你能直接跳跃到第二小节的歌词么?……唔唔……同样很难,是吧?


其实这很符合逻辑……你并不像计算机那样把字母表或者歌词像存储在硬盘一样的记住,你是把它们作为一个序列去记忆的。你很擅长于一个单词一个单词的去回忆起它们,这是一种条件记忆。你只有在拥有了前边部分的记忆了以后,才能想起来后边的部分。如果你对链表比较熟悉的话,OK,我们的记忆就和链表是类似的。


然而,这并不意味着当你不唱歌时,你的记忆中就没有这首歌。而是说,当你试图直接记忆起某个中间的部分,你需要花费一定的时间在你的脑海中寻找(也许是在一大堆神经元里寻找)。大脑开始在这首歌里到处寻找你想要的中间部分,但是大脑之前并没有这么做过,所以它并没有一个能够指向中间这部分的索引。这就像住在一个附近都是岔路/死胡同的地方,你从大路上到某人的房子很简单,因为你经常那样走。但是把你丢在一家人的后院里,你却怎么也找不到正确的道路了。可见你的大脑并不是用“方位”去寻找,而是通过一首歌的开头所在的神经元去寻找的。如果你想了解更多关于大脑的知识,可以访问:http://www.human-memory.net/processes_recall.html


就像链表一样,记忆这样去存储是很有效的。这样可以通过脑神经网络很好的找到相似的属性、优势。一些过程、难题、表示、查询也可以通过这种短期/伪条件记忆序列存储的方式,使其更加的高效。


去记忆一些数据是序列的事情(其实就是意味着你有些东西需要去记住!),假设有一个跳跳球,每个数据点就是你眼中跳跳球运动的一帧图像。如果你想训练一个神经网络去预测下一帧球会在哪里,那么知道上一帧球在哪里就会对你的预测很有帮助!这样的序列数据就是我们为什么要搭建一个递归神经网络。那么,一个神经网络怎么记住它之前的时间它看到了什么呢?


神经网络有隐藏层,一般来讲,隐藏层的状态只跟输入数据有关。所以一般来说一个神经网络的信息流就会像下面所示的这样:

input -> hidden ->output


这很明显,确定的输入产生确定的隐藏层,确定的隐藏层产生确定的输出层。这是一种封闭系统。但是,记忆改变了这种模式!记忆意味着隐藏层是,当前时刻的输入与隐藏层前一时刻的一种组合。

( input + prev_hidden ) -> hidden -> output


为什么是隐藏层呢?其实技术上来说我们可以这样:

( input + prev_input ) -> hidden -> output


然而,我们遗漏了一些东西。我建议你认真想想这两个信息流的不同。给你点提示,演绎一下它们分别是怎么运作的。这里呢,我们给出4步的递归神经网络流程看看它怎么从之前的隐藏层得到信息。

( input + empty_hidden ) -> hidden -> output

( input + prev_hidden   ) -> hidden -> output

( input + prev_hidden   ) -> hidden -> output

( input + prev_hidden   ) -> hidden -> output


然后,我们再给出4步,从输入层怎么得到信息。

( input + empty_input ) -> hidden -> output

( input + prev_input    ) -> hidden -> output

( input + prev_input    ) -> hidden -> output

( input + prev_input    ) -> hidden -> output


或许,如果我把一些部分涂上颜色,一些东西就显而易见了。那么我们再看看这4步隐藏层的递归:

input + empty_hidden ) ->hidden -> output

input + prev_hidden   ) ->hidden -> output

input + prev_hidden   ) ->hidden -> output

input + prev_hidden   ) ->hidden -> output


……以及,4步输入层的递归:

input + empty_input ) -> hidden -> output

input + prev_input    ) -> hidden -> output

input + prev_input    ) -> hidden -> output

input + prev_input    ) -> hidden -> output


看一下最后一个隐藏层(第四行)。在隐藏层递归中,我们可以看到所有见过的输入的存在。但是在输入层递归中,我们仅仅能发现上次与本次的输入。这就是为什么我们用隐藏层递归建模。隐藏层递归能学习它到底去记忆什么,但是输入层递归仅仅能记住上次的数据点。


现在我们对比一下这两种方法,通过反向的字母表与歌词中间部分的练习。隐藏层根据越来越多的输入持续的改变,而且,我们到达这些隐藏状态的唯一方式就是沿着正确的输入序列。现在就到了很重要的一点,输出由隐藏层决定,而且只有通过正确的输入序列才能到达隐藏层。是不是很相似?


那么有什么实质的区别呢?我们考虑一下我们要预测歌词中的下一个词,假如碰巧在不同的地方有两个相同的词,“输出层递归”就会使你回忆不起来下面的歌词到底是什么了。仔细想想,如果一首歌有一句“我爱你”,以及“我爱萝卜”,记忆网络现在试图去预测下一个词,那它怎么知道“我爱”后边到底是什么?可能是“你”,也可能是“萝卜”。所以记忆网络必须要知道更多的信息,去识别这到底是歌词中的那一段。而“隐藏层递归”不会让你忘记歌词,就是通过这个原理。它巧妙地记住了它看到的所有东西(记忆更巧妙地是它能随时间逐渐忘却)。想看看它是怎么运作的,猛戳这里:http://karpathy.github.io/2015/05/21/rnn-effectiveness/


好的,现在停下来,然后确认你的脑袋是清醒的。


第二部分:RNN - 神经网路记忆


现在我们已经对这个问题有个直观的认识了,让我们下潜的更深一点(什么鬼,你在逗我?)。就像在反向传播这篇博文(http://blog.csdn.net/zzukun/article/details/49556715)里介绍的那样,输入数据决定了我们神经网络的输入层。每行输入数据都被用来产生隐含层(通过正向传播),然后用每个隐含层生成输出层(假设只有一层隐含层)。就像我们刚才看到的,记忆意味着隐含层是输入与上一次隐含层的组合。那么怎么组合呢?其实就像神经网络的其他传播方法,用一个矩阵就行了,这个矩阵定义了之前隐含层与当前的关系。


从这张图中能看出来很多东西。这里只有三个权值矩阵,其中两个很相似(名字也一样)。SYNAPSE_0把输入数据传播到隐含层,SYNAPSE_1把隐含层数据传播到输出层。新的矩阵(SYNAPSE_h……要递归的),把隐含层(layer_1)传播到下一个时间点的隐含层(仍旧是layer_1)。


好的,现在停下来,然后确认你的脑袋是清醒的。



上边的GIF图展现出递归神经网络的奥秘,以及一些非常、非常重要的性质。图中描述了4个时间步数,第一个仅仅受到输入数据的影响,第二个把第二个输入与第一个的隐含层混合,如此继续。有人可能会注意到,在这种方式下,第四个网络“满了”。这样推测的话,第五步不得不选择一个某个节点去替代掉它。是的,这很正确。这就是记忆的“容量”概念。正如你所期望的,更多的隐含层节点能够存储更多的记忆,并使记忆保持更长的时间。同样这也是网络学习去忘记无关的记忆并且记住重要的记忆。你在能从第三步中看出点什么不?为什么有更多的绿色节点呢?


另外需要注意的是,隐含层是输入与输出中间的一道栅栏。事实上,输出已经不再是对应于输入的一个函数。输入只是改变了记忆中存储的东西,而且输出仅仅依赖于记忆!告诉你另外一个有趣的事情,如果上图中的第2,3,4步没有输入,随着时间的流逝,隐含层仍然会改变。


好的,好的,我知道你已经停下来了,不过一定要保证刚才的内容你已经差不多理解了。


第三部分:基于时间的反向传播

那么现在问题来了,递归神经网络怎么学习的呢?看下面的图片,黑色的是预测,误差是亮黄色,导数是芥末色的(暗黄色)。


网络通过从1到4的全部传播(通过任意长度的整个序列),然后从4到1反向传播所有的导数值。你也可以认为这仅仅是正常神经网络的一个有意思的变形,除了我们在各自的地方复用了相同的权值(突触synapses 0,1,h)。其他的地方都是很普通的反向传播。


第四部分:我们的玩具代码

我们现在使用递归神经网络去建模二进制加法。你看到下面的序列了么?上边这俩在方框里的,有颜色的1是什么意思呢?


框框中彩色的1表示“携带位”。当每个位置的和溢出时(需要进位),它们“携带这个‘1’”。我们就是要教神经网络学习去记住这个“携带位”。当“和”需要它,它需要去“携带这个‘1’”。


二进制加法从右边到左边进行计算,我们试图通过上边的数字,去预测横线下边的数字。我们想让神经网络遍历这个二进制序列并且记住它携带这个1与没有携带这个1的时候,这样的话网络就能进行正确的预测了。不要迷恋于这个问题本身,因为神经网络事实上也不在乎。就当作我们有两个在每个时间步数上的输入(1或者0加到每个数字的开头),这两个输入将会传播到隐含层,隐含层会记住是否有携带位。预测值会考虑所有的信息,然后去预测每个位置(时间步数)正确的值。


下面我推荐同时打开两个这个页面,这样就可以一边看代码,一边看下面的解释。我就是这么写这篇文章的。


Lines 0-2:导入依赖包,设定随机数生成的种子。我们只需要两个依赖包,numpy和copy。numpy是为了矩阵计算,copy用来拷贝东西。


Lines 4-11:我们的非线性函数与其导数,更多的细节可见参考我们之前的博客:http://blog.csdn.net/zzukun/article/details/49556715


Line 15:这一行声明了一个查找表,这个表是一个实数与对应二进制表示的映射。二进制表示将会是我们网路的输入与输出,所以这个查找表将会帮助我们将实数转化为其二进制表示。


Line 16:这里设置了二进制数的最大长度。如果一切都调试好了,你可以把它调整为一个非常大的数。


Line 18:这里计算了跟二进制最大长度对应的可以表示的最大十进制数。


Line 19:这里生成了十进制数转二进制数的查找表,并将其复制到int2binary里面。虽然说这一步不是必需的,但是这样的话理解起来会更方便。


Line 26:这里设置了学习速率。


Line 27:我们要把两个数加起来,所以我们一次要输入两位字符。如此以来,我们的网络就需要两个输入。


Line 28:这是隐含层的大小,回来存储“携带位”。需要注意的是,它的大小比原理上所需的要大。自己尝试着调整一下这个值,然后看看它如何影响收敛速率。更高的隐含层维度会使训练变慢还是变快?更多或是更少的迭代次数?


Line 29:我们只是预测和的值,也就是一个数。如此,我们只需一个输出。


Line 33:这个权值矩阵连接了输入层与隐含层,如此它就有“imput_dim”行以及“hidden_dim”列(假如你不改参数的话就是2×16)。


Line 34:这个权值矩阵连接了隐含层与输出层,如此它就有“hidden_dim”行以及“output_dim”列(假如你不改参数的话就是16×1)。


Line 35:这个权值矩阵连接了前一时刻的隐含层与现在时刻的隐含层。它同样连接了当前时刻的隐含层与下一时刻的隐含层。如此以来,它就有隐含层维度大小(hidden_dim)的行与隐含层维度大小(hidden_dim)的列(假如你没有修改参数就是16×16)。


Line 37-39:这里存储权值更新。在我们积累了一些权值更新以后,我们再去更新权值。这里先放一放,稍后我们再详细讨论。


Line 42:我们迭代训练样例10000次。


Line 45:这里我们要随机生成一个在范围内的加法问题。所以我们生成一个在0到最大值一半之间的整数。如果我们允许网络的表示超过这个范围,那么把两个数加起来就有可能溢出(比如一个很大的数导致我们的位数不能表示)。所以说,我们只把加法要加的两个数字设定在小于最大值的一半。


Line 46:我们查找a_int对应的二进制表示,然后把它存进a里面。


Line 48:原理同45行。


Line 49:原理同46行。


Line 52:我们计算加法的正确结果。


Line 53:把正确结果转化为二进制表示。


Line 56:初始化一个空的二进制数组,用来存储神经网络的预测值(便于我们最后输出)。你也可以不这样做,但是我觉得这样使事情变得更符合直觉。


Line 58:重置误差值(这是我们使用的一种记录收敛的方式……可以参考之前关于反向传播与梯度下降的文章)


Line 60-61:这两个list会每个时刻不断的记录layer 2的导数值与layer 1的值。


Line 62:在0时刻是没有之前的隐含层的,所以我们初始化一个全为0的。


Line 65:这个循环是遍历二进制数字。


Line 68:X跟图片中的“layer_0”是一样的,X数组中的每个元素包含两个二进制数,其中一个来自a,一个来自b。它通过position变量从a,b中检索,从最右边往左检索。所以说,当position等于0时,就检索a最右边的一位和b最右边的一位。当position等于1时,就向左移一位。


Line 69:跟68行检索的方式一样,但是把值替代成了正确的结果(0或者1)。


Line 72:这里就是奥妙所在!一定一定一定要保证你理解这一行!!!为了建立隐含层,我们首先做了两件事。第一,我们从输入层传播到隐含层(np.dot(X,synapse_0))。然后,我们从之前的隐含层传播到现在的隐含层(np.dot(prev_layer_1.synapse_h))。在这里,layer_1_values[-1]就是取了最后一个存进去的隐含层,也就是之前的那个隐含层!然后我们把两个向量加起来!!!!然后再通过sigmoid函数。

那么,我们怎么结合之前的隐含层信息与现在的输入呢?当每个都被变量矩阵传播过以后,我们把信息加起来。


Line 75:这行看起来很眼熟吧?这跟之前的文章类似,它从隐含层传播到输出层,即输出一个预测值。


Line 78:计算一下预测误差(预测值与真实值的差)。


Line 79:这里我们把导数值存起来(上图中的芥末黄),即把每个时刻的导数值都保留着。


Line 80:计算误差的绝对值,并把它们加起来,这样我们就得到一个误差的标量(用来衡量传播)。我们最后会得到所有二进制位的误差的总和。


Line 86:将layer_1的值拷贝到另外一个数组里,这样我们就可以下一个时间使用这个值。


Line 90:我们已经完成了所有的正向传播,并且已经计算了输出层的导数,并将其存入在一个列表里了。现在我们需要做的就是反向传播,从最后一个时间点开始,反向一直到第一个。


Line 92:像之前那样,检索输入数据。


Line 93:从列表中取出当前的隐含层。


Line 94:从列表中取出前一个隐含层。


Line 97:从列表中取出当前输出层的误差。


Line 99:这一行计算了当前隐含层的误差。通过当前之后一个时间点的误差和当前输出层的误差计算。


Line 102-104:我们已经有了反向传播中当前时刻的导数值,那么就可以生成权值更新的量了(但是还没真正的更新权值)。我们会在完成所有的反向传播以后再去真正的更新我们的权值矩阵,这是为什么呢?因为我们要用权值矩阵去做反向传播。如此以来,在完成所有反向传播以前,我们不能改变权值矩阵中的值。


Line 109-115:现在我们就已经完成了反向传播,得到了权值要更新的量,所以就赶快更新权值吧(别忘了重置update变量)!


Line 118-end:这里仅仅是一些输出日志,便于我们观察中间的计算过程与效果。


第五步分:建议与评论

如果您有什么疑问、意见与建议可以直接留言评论,或者给我email(likun@stu.zzu.edu.cn),或直接联系trask本人,感谢您的支持!


  • 27
    点赞
  • 242
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
### 回答1: RNN(Recurrent Neural Network)和LSTM(Long Short-Term Memory)是两种常用的循环神经网络模型,用于处理序列数据。RNN模型可以捕捉到序列的时序特征,但在长序列数据容易出现梯度消失或梯度爆炸的问题。而LSTM模型则通过引入门控机制来解决这一问题,能够长期保持并管理记忆信息。 混合RNNLSTM模型的实现可以通过Matlab的深度学习工具箱来实现。以下是一种可能的实现步骤: 1. 数据预处理:首先,将输入的序列数据进行预处理,比如标准化或归一化等处理,以防止梯度的过大或过小。 2. 构建网络结构:使用Matlab深度学习工具箱的函数,可以使用RNNLSTM层构建混合模型。可以根据实际需求设置隐藏层的大小和层数,并在LSTM层内设置门控层。 3. 设置训练参数:设置训练参数,比如学习率、迭代次数、批量大小等。 4. 编译与训练模型:使用Matlab深度学习工具箱的模型编译和训练函数,编译混合模型,并使用预处理后的数据进行训练。 5. 模型评估与预测:使用测试集数据对模型进行评估,并使用训练好的混合模型进行预测。 需要注意的是,混合RNNLSTM模型的实现还可以根据具体的任务需求进行调整和优化。比如可以添加正则化、批归一化等技术来提高模型的精度和泛化能力;还可以使用其他的优化算法来提高训练速度和效果等。 ### 回答2: RNN (递归神经网络) 和 LSTM (长短期记忆网络) 是两种经典的深度学习模型。在 MATLAB ,可以使用深度学习工具箱来实现 RNNLSTM 混合模型。 首先,我们需要导入深度学习工具箱,并准备好训练数据和标签。数据应该是时间序列的,每个时间步骤的输入都有一个相应的输出。 接下来,我们可以定义我们的 RNNLSTM 模型。我们可以使用“sequenceInputLayer”来定义输入层,并设置输入序列的维度。然后,我们可以使用“lstmLayer”来定义 LSTM 层,并设置隐藏状态的大小。最后,我们可以使用“fullyConnectedLayer”来定义输出层,设置输出的大小。 在模型定义好之后,我们可以使用“addLayers”将层添加到我们的模型。我们可以设置输入层、LSTM 层和输出层之间的连接关系。然后,我们可以使用“connectLayers”来连接这些层,并设置它们之间的连接方式。 模型定义完成后,我们可以使用“trainNetwork”来训练我们的模型。我们可以设置训练迭代的次数、批处理大小和学习率等超参数。训练完成后,我们可以使用“predict”来对新的输入数据进行预测。 最后,我们可以使用“plot”来绘制训练过程的损失和准确率曲线,以评估模型的性能。 总结来说,RNNLSTM 混合模型的 MATLAB 实现需要以下步骤:导入深度学习工具箱、准备训练数据和标签、定义模型的输入层、LSTM 层和输出层、连接层之间的关系、训练模型、预测新的输入数据、评估模型性能。以上是一个简单的流程,具体的实现可以根据具体需求进行调整和修改。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值