基于遗传算法的BP神经网络优化算法

遗传算法优化BP神经网络分为BP神经网络结构确定、遗传算法优化和 BP神经网络预测3个部分。其中,BP神经网络结构确定部分根据拟合函数输入输出参数个数确定 BP神经网络结构,这样就可以确定遗传算法的优化参数个数,进而确定遗传算法个体的编码长度。因为遗传算法优化的参数是 BP神经网络的初始权值和阈值,只要网络的结构已知,权值和阈值的个数就已知了。种群中的每个个体都包含了一个网络所有权值和阈值,个体通过适应度函数计算个体适应度值,遗传算法通过选择、交叉和变异操作找到最优适应度值对应的个体。BP神经网络预测用遗传算法得到最优个体对网络进行初始权值和阈值的赋值,网络经训练后预测样本输出。神经网络的权值和阈值一般是通过初始化为【-0.5,0.5】区间的随机数,这个初始化参数对网络训练的影响很大,但是又无法准确获得,对于相同的初始权重值和阈值,网络的训练结果是一样的,引入遗传算法就是为了优化出最优的初始权值和阈值。
遗传算法优化BP神经网络的算法流程如下:

这里写图片描述

遗传算法的基本要素包括染色体编码方法、适应度函数、遗传操作和运行参数。其中染色体编码方法是指个体的编码方法,目前包括二进制法、实数法等。二进制法是指把个体编码成为一个二进制串,实数法是指把个体编码成为一个实数串。适应度函数是指根据进化目标编写的计算个体适应度值的函数,通过适应度函数计算每个个体的适应度值,提供给选择算子进行选择。遗传操作是指选择操作、交叉操作和变异操作。运行参数是遗传算法在初始化时确定的参数,主要包括群体大小 M,遗传代数G,交叉概率Pc和变异概率Pm。(下面都是引用的MATLAB智能算法30个案例里面的内容,太多了,偷了个懒)

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnumhiddennum; % 输入层到隐层的权值个数
w2num=outputnum
hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数

%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值

FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen<MAXGEN
fprintf(’%d\n’,gen)
FitnV=ranking(ObjV); %分配适应度值
SelCh=select(‘sus’,Chrom,FitnV,GGAP); %选择,随机遍历抽样
SelCh=recombin(‘xovsp’,SelCh,px); %重组,单点交叉
SelCh=mut(SelCh,pm); %变异
X=bs2rv(SelCh,FieldD); %子代个体的十进制转换
ObjVSel=Objfun(X,P,T,hiddennum,P_test,T_test); %计算子代的目标函数值
[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群,注意插入后新种群与老种群的规模是一样的
%代沟只是说选择子种群的时候是选择95%的个体作为待插入的子种群
%1,父代chrome和子代selch中的子种群个数都是1,1,基于适应度的选择,子代代替父代中适应度最小的个体
X=bs2rv(Chrom,FieldD);%插入完成后,重新计算个体的十进制值
gen=gen+1; %代计数器增加
%获取每代的最优解及其序号,Y为最优解,I为个体的序号
[Y,I]=min(ObjV);%Objv是目标函数值,也就是预测误差的范数
trace(1:N,gen)=X(I,:); %记下每代个体的最优值,即各个权重值
trace(end,gen)=Y; %记下每代目标函数的最优值,即预测误差的范数
end
%% 画进化图
figure(1);
plot(1:MAXGEN,trace(end,:));
grid on
xlabel(‘遗传代数’)
ylabel(‘误差的变化’)
title(‘进化过程’)
bestX=trace(1:end-1,end);%注意这里仅是记录下了最优的初始权重,训练得到的最终的网络的权值并未记录下来
bestErr=trace(end,end);
fprintf([‘最优初始权值和阈值:\nX=’,num2str(bestX’),’\n最小误差err=’,num2str(bestErr),’\n’])
%% 比较优化前后的训练&测试
callbackfun

子函数:
function Obj=Objfun(X,P,T,hiddennum,P_test,T_test)
%% 用来分别求解种群中各个个体的目标值
%% 输入
% X:所有个体的初始权值和阈值
% P:训练样本输入
% T:训练样本输出
% hiddennum:隐含层神经元数
% P_test:测试样本输入
% T_test:测试样本期望输出
%% 输出
% Obj:所有个体的预测样本的预测误差的范数
%这个函数的目的就是用种群中所有个体所代表的神经网络的初始权重值去进行网络的训练,训练次数是1000次,然
%后得出所有个体作为初始权重训练网络1000次所得出的预测误差,也就是这里的obj,返回到原函数中,迭代maxgen=50次
%记录下每一代的最优权重值和最优目标值(最小误差值)
[M,N]=size(X);
Obj=zeros(M,1);
for i=1:M%M是40,即有40个个体,每个个体就是一次初始权重,在BPfun中用每个个体作为初始值去进行了1000次的训练
Obj(i)=BPfun(X(i,:),P,T,hiddennum,P_test,T_test);%Obj是一个40*1的向量,每个值对应的是一个个体作为初始权重值去进行训练
%网络1000次得出来的误差
end

function err=BPfun(x,P,T,hiddennum,P_test,T_test)
%% 训练&测试BP网络
%% 输入
% x:一个个体的初始权值和阈值
% P:训练样本输入
% T:训练样本输出
% hiddennum:隐含层神经元数
% P_test:测试样本输入
% T_test:测试样本期望输出
%% 输出
% err:预测样本的预测误差的范数
%用每一个个体的初始权值去训练1000次
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
%% 新建BP网络
%神经网络的隐含层神经元的传递函数采用S型正切函数tansing(),输出层神经元的函数采用S型对数函数logsig()
net=newff(minmax§,[hiddennum,outputnum],{‘tansig’,‘logsig’},‘trainlm’);
%% 设置网络参数:训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000;%允许最大训练次数,实际这个网络训练到迭代次数是3时就已经到达要求结束了
net.trainParam.goal=0.01;%训练目标最小误差,应该是mean square error, 均方误差,就是网络输出和目标值的差的平方再求平均值
LP.lr=0.1;%学习速率学习率的作用是不断调整权值阈值。w(n+1)=w(n)+LP.lr*(d(n)-y(n))x(n),d(n)是期望的相应,y(n)是
%量化的实际响应,x(n)是输入向量,如果d(n)与y(n)相等的话,则w(n+1)=w(n),这里是指输入到隐含层的调整方式
%隐含层到输出层的调整 Iout(j)=1/(1+exp(-I(j)));
%dw2=e
Iout;db2=e’;w2=w2_1+xitedw2’;e是错误值
%b2=b2_1+xite
db2’;xite是学习率
%对于traingdm等函数建立的BP网络,学习速率一般取0.01-0.1之间。
net.trainParam.show=NaN;
% net.trainParam.showwindow=false; %高版MATLAB
%% BP神经网络初始权值和阈值
w1num=inputnumhiddennum; % 输入层到隐层的权值个数
w2num=outputnum
hiddennum;% 隐层到输出层的权值个数
w1=x(1:w1num); %初始输入层到隐层的权值
B1=x(w1num+1:w1num+hiddennum); %初始隐层阈值
w2=x(w1num+hiddennum+1:w1num+hiddennum+w2num); %初始隐层到输出层的阈值
B2=x(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum); %输出层阈值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);%输入到隐藏层的权重
net.lw{2,1}=reshape(w2,outputnum,hiddennum);%隐藏到输出层的权重
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=reshape(B2,outputnum,1);
%% 训练网络以
net=train(net,P,T);
%% 测试网络
Y=sim(net,P_test);%测试样本的仿真结果
err=norm(Y-T_test);%测试样本的仿真误差

callbackfun函数,比较实用遗传算法和不使用遗传算法优化的结果对比
clc
%% 不使用遗传算法
%% 使用随机权值和阈值
% P:训练样本输入
% T:训练样本标签
% P_test:测试样本输入
% T_test:测试样本期望输出

inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
%% 新建BP网络
net=newff(minmax§,[hiddennum,outputnum],{‘tansig’,‘logsig’},‘trainlm’);
%% 设置网络参数:训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000;
net.trainParam.goal=0.01;
LP.lr=0.1;
%% 训练网络以
net=train(net,P,T);
%% 测试网络
disp(['1、使用随机权值和阈值 '])
disp(‘测试样本预测结果:’)
Y1=sim(net,P_test)%测试样本的网络仿真输出
err1=norm(Y1-T_test); %测试样本的仿真误差
err11=norm(sim(net,P)-T); %训练样本的仿真误差
disp([‘测试样本的仿真误差:’,num2str(err1)])
disp([‘训练样本的仿真误差:’,num2str(err11)])

%% 使用遗传算法
%% 使用优化后的权值和阈值,利用遗传算法得出来的最优的初始权重和阈值去进行网络的初始化
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
%% 新建BP网络
net=newff(minmax§,[hiddennum,outputnum],{‘tansig’,‘logsig’},‘trainlm’);
%% 设置网络参数:训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000;
net.trainParam.goal=0.01;
LP.lr=0.1;
%% BP神经网络初始权值和阈值
w1num=inputnumhiddennum; % 输入层到隐层的权值个数
w2num=outputnum
hiddennum;% 隐层到输出层的权值个数
w1=bestX(1:w1num); %初始输入层到隐层的权值
B1=bestX(w1num+1:w1num+hiddennum); %初始隐层阈值
w2=bestX(w1num+hiddennum+1:w1num+hiddennum+w2num); %初始隐层到输出层的阈值
B2=bestX(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum); %输出层阈值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=reshape(B2,outputnum,1);
%% 训练网络以
net=train(net,P,T);
%% 测试网络
disp([‘2、使用优化后的权值和阈值’])
disp(‘测试样本预测结果:’)
Y2=sim(net,P_test)%测试样本的仿真输出
err2=norm(Y2-T_test);%测试样本的仿真误差
err21=norm(sim(net,P)-T);%训练样本的仿真误差
disp([‘测试样本的仿真误差:’,num2str(err2)])
disp([‘训练样本的仿真误差:’,num2str(err21)])

运行的结果:
1、使用随机权值和阈值
测试样本预测结果:

Y1 =

0.8823    0.0030    0.0490
0.0057    0.9545    0.0103
0.0000    0.0000    0.9551

2、使用优化后的权值和阈值
测试样本预测结果:

Y2 =

0.9805    0.0180    0.0234
0.0319    0.9813    0.0154
0.0121    0.0299    0.9718

测试样本的仿真误差:0.048476
训练样本的仿真误差:0.1262

这里写图片描述

测试样本的仿真误差:0.12883 训练样本的仿真误差:0.22123 之所以训练样本的误差反而更大的原因是训练样本是多于测试样本的,这里训练样本的个数是9个,而测试样本的个数是3个,所以积累的误差比较多。
这里程序运行所使用的数据及程序我在资源里有上传,可以下载使用学习。

后记:::BP神经网络——与validation check相关
​​在使用神经网络建模过程中,默认把样本随机分为3类:训练样本,验证样本和测试样本。验证样本的检查值默认是6,是指在网络利用训练样本进行训练的过程中,验证样本的误差连续6次迭代不再下降。则,训练终止(这只是训练终止条件之一,其他的如训练步数,目标误差等,满足任一条件,训练过程都将终止)。我们可以这样理解,如果随着网络的训练,验证样本的误差已经基本不再减小,甚至增大,那么就没有必要再去训练网络了。因为即使继续训练下去,当我们利用测试样本进行网络测试时,测试样本的误差同样也不会有所改善,甚至会过度拟合。validation checks已经达到设置的值了,所以网络停止训练,即如果网络在连续max_fail epochs后不能提高网络性能,就停止训练。

通常,有三种方法解决这个问题:

1.提高validation checks的数值,比如设置net.trainParam.max_fail = 200,其实,这就是自己糊弄自己,非常不严谨,严重不推荐。训练时候,出现停止这种情况,就是因为被训练的网络出现了问题,已经过拟合,应该停下来。但6,的确,可能,有点小,建议改为10到20之间的数吧?这个需要细细思量一下,一般情况默认就好吧?

2.修改被训练的网络,比如说再加一个隐藏层试试

3.如果是数据太相近的问题,试试选择用输入训练数据的乱序排法,以及分类​

divideblock,divideind,divideint和dividerand分别是block方法抽取、按数组标号自定义抽取、交错索引抽取和随机抽.

[trainV,valV,testV,trainInd,valInd,testInd] =divideblock(allV,trainRatio,valRatio,testRatio)[训练数据,变量数据,测试数据,训练数据矩阵的标号,变量数据标号,测试数据标号] =divideblock(所有数据,训练数据百分比,变量数据百分比,测试数据百分比)通过设置网络的divideFcn函数来实现,比如,net.divideFcn='divideblock',但不是说不可以在代码中像dividevec直接调用

我们要明白它为什么要停止。连续6次误差不断增大,说明网络性能越训练越差。这可能是两方面原因:

1.过拟合。网络学习得太好了,反而泛化能力下降。

2.网络规模不够大,信息存储能力不够强,原先学习的知识又被新样本抹去了,导致网络性能无法提升。

要解决这个问题:

1.如果要改变validation的验证次数,可以用这个语句net.trainParam.max_fail = 20;  

2.或者是增多隐节点或隐层数。

另外,提前停止的网络虽然陷入局优,但不一定就不能用吧,看一下实际效果;

一般来说,不下降就是增大,不可能误差不变。数据少就降低隐层节点数。​
  • 92
    点赞
  • 918
    收藏
    觉得还不错? 一键收藏
  • 65
    评论
基于遗传算法BP神经网络是一种优化方法,用于确定BP神经网络的初始权值和阈值。这种方法的基本思想是使用遗传算法来搜索最优的初始权值和阈值,以使BP神经网络在训练过程中能够更好地拟合样本数据。遗传算法优化BP神经网络的过程包括三个主要部分:BP神经网络结构确定、遗传算法优化BP神经网络预测。 在BP神经网络结构确定阶段,根据样本的输入/输出参数个数确定BP神经网络的结构。这样就可以确定遗传算法优化参数的个数,从而确定种群个体的编码长度。 在遗传算法优化阶段,遗传算法通过选择、交叉和变异操作来搜索最优的个体,即具有最佳适应度值的个体。这些个体代表了BP神经网络的初始权值和阈值。 在BP神经网络预测阶段,使用遗传算法得到的最优个体对网络进行初始权值和阈值的赋值。然后,通过对网络进行训练,使用样本数据进行预测。 遗传算法优化BP神经网络的目的是通过遗传算法得到更好的网络初始权值和阈值,以提高网络的预测性能。这种方法可以帮助网络更好地适应样本数据,并提高预测的准确性。 #### 引用[.reference_title] - *1* [第三章 基于遗传算法BP神经网络优化算法(一)](https://blog.csdn.net/qq_43336475/article/details/120682534)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [基于遗传算法BP神经网络优化算法](https://blog.csdn.net/dulingtingzi/article/details/51114832)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [基于遗传算法BP神经网络优化](https://blog.csdn.net/weixin_42841084/article/details/104646656)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 65
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值