pytorch零基础实现手写数学符号识别项目(一)——数据集以及数据概况

本文是PyTorch手写数学符号识别项目的开篇,介绍数据集的来源、信息和使用方法,包括数据集的观察、统计分析、数据读取以及解决内存溢出问题的策略。项目旨在利用深度学习进行图像分类,适用于初学者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目文章列表

手写数学符号识别项目(一)——数据集以及数据概况

手写数学符号识别项目(二)——数据加载以及模型浅试

手写数学符号识别项目(三)——模型训练与预测

【模块化】pytorch深度学习案例(一)——手写数学符号识别


前言

人工智能主要可以解决的问题分为:模拟人类认知和模拟人类感知,图像分类就是模拟人类感知的过程的一个方向,即分辨出图像中的事物是什么,未来的几周我们将借助手写数学符号数据集来着重讲解pytorch用于图像分类的技术,对于实现中的细节也将逐步讲解。

注:本项目免费概括版本请查看下面链接(附模块化代码)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值