EnlightenGAN: Deep Light Enhancement without Paired Supervision源码实现

最近楼楼在做相关的项目,需要调整数据集的亮度,看相关的论文时,发现这篇论文具有相当高的可取之处。话不多说,分享一下我的采坑记录。

相关准备

源码地址:点击这里

在GitHub中,作者给出了源码,数据集等,这些都可以在里面下载到,ReadMe中也给出了详细的运行方法,对小白来说还是比较友好的。

踩坑记录

由于木有详细的报错截图,我就大致说一下。

1.".\final_datasets/trainA"或者".\final_datasets/trainA" is not a valid directory.

这个其实并不是因为斜杠的原因,而是文件夹的目录,数据集的位置并不是放在项目工程内的,而是和它同级。

2.计算机积极的拒绝

这个问题其实很简单,GitHub中已经明确说了要开启visdom.sevser

3.CUDA out of memery

只需要调整batchsize的大小就可以了,源码中设置的是32,可以先改成2试试,就是运行速度会变得很慢。
需要注意的是,在这个错误中,慎用withtorch.no_grad()指令,因为这个语句会引起另外一个报错,tensor方面的。
主要的是,这个指令会取消梯度的计算,如果在train过程中,正是需要计算梯度。

4.gpu_id问题,原报错不记得

源码中作者设置的是0,1,2三片gpu,所以如果你设备跟不上,在源码中进行修改,改成0就可以了。

除此之外,也就是一些python版本不同的一些小错误,改正过来也很简单。只有用心看看代码,还是能够解决这些错误的。

实验结果展示

借助作者的源码,展示一下自己的实验结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

根据图像显示,结果还是不错的。

因本人水平有限,如果有说的不妥之处,希望大牛们不吝赐教。

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会长胖的斜杠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值