1. 概念
联邦学习(Federated Learning, FL)是一种分布式机器学习技术,它允许多个参与方(如设备、机构或企业)在不共享原始数据的情况下协同训练机器学习模型。联邦学习通过本地计算+模型参数聚合的方式,保护数据隐私的同时,实现跨数据源的联合建模。
2. 核心特点
- 隐私保护:数据不离开本地,仅共享模型更新,避免数据泄露。
- 分布式计算:计算在数据端完成,提高训练效率,减少数据传输。
- 跨场景应用:适用于多个数据孤岛(如银行、医院、智能设备等)。
- 去中心化:可结合区块链等技术,实现去中心化的模型管理。
联邦学习的典型架构
联邦学习通常有以下几种架构:
-
横向联邦学习(Horizontal FL)
- 适用于数据特征相同但样本不同的情况(如不同地区的银行客户数据)。
- 主要关注数据的扩展性