AT800(3000) +昇腾300V 之 第一个例子图片分类

背景

第一个例子是 图片分类的应用

因第一个,直接获取已训练好的开源模型,选择Caffe框架的ResNet-50模型。

ResNet-50模型的基本介绍如下:

输入数据:RGB格式、224*224分辨率的输入图片
输出数据:图片的类别标签及其对应置信度

开发流程

AscendCL(Ascend Computing Language)是一套用于在CANN(Compute Architecture for Neural Networks)上开发深度神经网络推理应用的C语言API库,提供模型加载与执行、媒体数据处理、算子加载与执行等API,能够实现在昇腾CANN平台上进行深度学习推理计算、图形图像预处理、单算子加速计算等能力。

图片流程来自昇腾社区
在这里插入图片描述

准备模型

昇腾 需要专用的模型,第一步 需要对开源模型进行转换。
使用ATC(Ascend Tensor Compiler)工具将开源框架的网络模型转换为适配昇腾AI处理器的离线模型(*.om文件)。

ATC 参数说明

  • – model:ResNet-50网络的模型文件(*.prototxt)的路径。
  • –weight:ResNet-50网络的权重文件(*.caffemodel)的路径。
  • –framework:原始框架类型。0:表示Caffe;1:表示MindSpore;3:表示TensorFlow;5:表示ONNX。
  • –output:resnet50.om模型文件的路径。请注意,记录保存该om模型文件的路径,后续开发应用时需要使用。
  • –soc_version:昇腾AI处理器的版本。
 npu-smi info
+--------------------------------------------------------------------------------------------------------+
| npu-smi 23.0.rc2                                 Version: 23.0.rc2                                     |
+-------------------------------+-----------------+------------------------------------------------------+
| NPU     Name                  | Health          | Power(W)     Temp(C)           Hugepages-Usage(page) |
| Chip    Device                | Bus-Id          | AICore(%)    Memory-Usage(MB)                        |
+===============================+=================+======================================================+
| 0       310P3                 | OK              | NA           44                0     / 0             |
| 0       0                     | 0000:01:00.0    | 0            1698 / 21527                            |
+=======
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lin_AIOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值