背景
第一个例子是 图片分类的应用
因第一个,直接获取已训练好的开源模型,选择Caffe框架的ResNet-50模型。
ResNet-50模型的基本介绍如下:
输入数据:RGB格式、224*224分辨率的输入图片
输出数据:图片的类别标签及其对应置信度
开发流程
AscendCL(Ascend Computing Language)是一套用于在CANN(Compute Architecture for Neural Networks)上开发深度神经网络推理应用的C语言API库,提供模型加载与执行、媒体数据处理、算子加载与执行等API,能够实现在昇腾CANN平台上进行深度学习推理计算、图形图像预处理、单算子加速计算等能力。
图片流程来自昇腾社区
准备模型
昇腾 需要专用的模型,第一步 需要对开源模型进行转换。
使用ATC(Ascend Tensor Compiler)工具将开源框架的网络模型转换为适配昇腾AI处理器的离线模型(*.om文件)。
ATC 参数说明
- – model:ResNet-50网络的模型文件(*.prototxt)的路径。
- –weight:ResNet-50网络的权重文件(*.caffemodel)的路径。
- –framework:原始框架类型。0:表示Caffe;1:表示MindSpore;3:表示TensorFlow;5:表示ONNX。
- –output:resnet50.om模型文件的路径。请注意,记录保存该om模型文件的路径,后续开发应用时需要使用。
- –soc_version:昇腾AI处理器的版本。
npu-smi info
+--------------------------------------------------------------------------------------------------------+
| npu-smi 23.0.rc2 Version: 23.0.rc2 |
+-------------------------------+-----------------+------------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page) |
| Chip Device | Bus-Id | AICore(%) Memory-Usage(MB) |
+===============================+=================+======================================================+
| 0 310P3 | OK | NA 44 0 / 0 |
| 0 0 | 0000:01:00.0 | 0 1698 / 21527 |
+=======