脑机接口基础学习06---机器学习算法随机森林判断睡眠类型

案例介绍
本案例对多导睡眠图(Polysomnography,PSG)数据进行睡眠阶段的分类来判断睡眠类型
训练:对Alice的睡眠数据进行训练
测试:利用训练结果对Bob的睡眠数据进行测试,判断其睡眠类型
在分析之前,先简单介绍一下多导睡眠图,多导睡眠图(Polysomnography,PSG)又称睡眠脑电图。主要用于睡眠和梦境研究以及抑郁症和呼吸暂停综合征的诊断
多导睡眠图是通过不同部位的生物电或通过不同传感获得生物讯号,经前置放大,输出为不同的电讯号,记录出不同的图形以供分析。

数据集介绍:
本案例用的数据是来自于PhysioNet上关于健康受试者的年龄对睡眠影响研究的公开数据集的一个子集。
mne.datasets.sleep_physionet.age.fetch_data可以下载PhysioNet数据集的子数据集
该子数据集中包含20位受试者的实验数据,记录当时年龄为25-34岁的10位男性和10位女性的实验数据。
由于受试者13的第二个记录遗失了,所以除了受试者13以外,每个受试者都有两次夜间记录

Sleep Physionet数据集使用8个标签进行标注,代表8个阶段:
Wake(W),
Stage 1,
Stage 2,
Stage 3,
Stage 4,
REM(R),
Movement time(M),
Stage(?).Stage(?)-(not scored)
唤醒-Wake(W)、第1阶段、第2阶段、第3阶段、第4阶段、对应于轻度睡眠到深度睡眠的范围;REM睡眠(R),其中REM是Rapid Eye的缩写,表示快速眼运动睡眠,运动(M)和阶段(?)的任何未得分部分


#导入工具库
import numpy as np
import matplotlib.pyplot as plt

import mne
from mne.datasets.sleep_physionet.age import fetch_data
from mne.time_frequency import psd_welch

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer

第二步:加载数据
在这里,我们从两个主题下载数据,最终目标是获得时间片段(epochs)及其相关的地面真理

MNE-Python为我们提供了mne.datasets.sleep_physionet.age.fetch_data(),可以方便地从Slepp Physionet数据集下载数据,给定主题和记录的列表,提取程序将下载数据并为每个主题提供数据,一对文件:
-PSG.edf 包含多导睡眠图。来自EEG头盔的原始数据
-Hypnogram.edf 包含专家记录的注释

然后,将这两个对象合并到mne.io.Raw对象中,就可以根据注释的描述提取事件以获得时间片段(epochs)

可以通过
mne.datasets.sleep_physionet.age.fetch_data(subjects,recording,path)
来获取PhysioNet多导睡眠图数据集文件。

subjects:表示想要使用哪些受试者对象,可供选择的受试者对象范围0-19
recording:表示夜间记录的编号(索引),有效值为[1]、[2]或[1、2]

path:PhysioNet数据的存放地址,如果没有给定,则加载默认存放数据的地址:
如果默认存放数据集的地址不存在数据,则从网络中下载相关数据。

#选择两个受试者实验对象ALICE,BOB(改名字并非实验中的真实名,这里是为了方便临时取的名字)
ALICE,BOB=0,1
#加载ALICE,BOB的实验数据文件
[alice_files,bob_files]=fetch_data(subjects=[ALICE,BOB],recording=[1])

#通道名称映射
mapping={'EOG horizontal':'eog',
         'Resp oro-nasal':'misc',
         'EMG submental':'misc',
         'Temp rectal':'misc',
         'Event marker':'misc'}

#读取ALICE的edf文件,和其对应的注释文件

raw_train=mne.io.read_raw_edf(alice_files[0])
annot_train=mne.read_annotations(alice_files[1])

raw_train.set_annotations(annot_train,emit_warning=False)
raw_train.set_channel_types(mapping)

#绘制空0s开始,时间窗口长度为40s的连续通道数据波形图
raw_train.plot(duration=40,scalings='auto')
plt.show()

输出结果:
在这里插入图片描述
不知道为什么,我这个图出现了这样子的问题,希望有大佬可以指点一下
这里仅使用5个阶段:唤醒(W),阶段1,阶段2,阶段3/4和REM睡眠(R)。
为此,这里使用mne.events_from_annotations()中的event_id参数来选择我们感兴趣的事件,并将事件标识符与每个事件相关联。

'''
睡眠表示与事件映射

'''

annotation_desc_2_event_id={'Sleep stage W':1,
                           'Sleep stage 1':2,
                           'Sleep stage 2':3,
                           'Sleep stage 3':4,
                           'Sleep stage 4':4,
                           'Sleep stage R':5}

events_train,_=mne.events_from_annotations(raw_train,event_id=annotation_desc_2_event_id,
                                          chunk_duration=30)

#创建一个新的event_id以统一阶段3和4
event_id={'Sleep stage W':1,
         'Sleep stage 1':2,
         'Sleep stage 2':3,
         'Sleep stage 3/4':4,
         'Sleep stage R':5}

#绘制事件数据
mne.viz.plot_events(events_train,event_id=event_id,
                   sfreq=raw_train.info['sfreq'])

#保留颜色代码以便进一步绘制
stage_colors=plt.rcParams['axes.prop_cycle'].by_key()['color']

在这里插入图片描述

#根据注释中的事件从数据创建epochs(时间片段)

tmax=30.-1./raw_train.info['sfreq']#tmax in included
'''
所创建的是时间从tmin=0开始,到tmax为止的epochs

'''

epochs_train=mne.Epochs(raw=raw_train,events=events_train,
                       event_id=event_id,tmin=0,tmax=tmax,baseline=None)

print(epochs_train)

在这里插入图片描述

###第三步:加载Bob的数据作为测试数据
#按照上述相同的步骤来获取Bob的测试数据

raw_test=mne.io.read_raw_edf(bob_files[0])
annot_test=mne.read_annotations(bob_files[1])
raw_test.set_annotations(annot_test,emit_warning=False)
raw_test.set_channel_types(mapping)
events_test,_=mne.events_from_annotations(raw_test,event_id=annotation_desc_2_event_id,
                                         chunk_duration=30.)
epochs_test=mne.Epochs(raw=raw_test,events=events_test,event_id=event_id,
                      tmin=0.,tmax=tmax,baseline=None)


print(epochs_test)

在这里插入图片描述
特征工程
观察不同睡眠阶段的功率谱密度(PSD)图,可以看到不同睡眠阶段具有不同的特征。这些签名在Alice和Bob的数据中保持相似

在本节的其余部分中,将基于特定频带的相对功率来创建EEG特征,以捕获数据中睡眠阶段之间的差异

fig,(ax1,ax2)=plt.subplots(ncols=2)

#iterate over the subjects
stages=sorted(event_id.keys())

for ax,title,epochs in zip([ax1,ax2],
                          ['Alice','Bob'],
                          [epochs_train,epochs_test]):
    for stage,color in zip(stages,stage_colors):
        epochs[stage].plot_psd(area_mode=None,color=color,ax=ax,
                              fmin=0.1,fmax=20.,show=False,
                               average=True,spatial_colors=False)
    ax.set(title=title,xlabel='Frequency(Hz)')
ax2.set(ylabel='uv^2/hz(dB)')
ax2.legend(ax2.lines[2::3],stages)
plt.tight_layout()
plt.show()

在这里插入图片描述
第四步:设计scikit-learn转换器
创建一个函数,根据特定频带中的相对功率提取脑电图特征,从而能够根据脑电图信号预测睡眠阶段

def eeg_power_band(epochs):
    
    '''
    脑电相对功率带特征提取
    该函数接受一个‘mne.Epochs’对象,
    并基于与scikit-learn兼容的特定频带中的相对功率创建EEG特征
    
    Parameters
    ------------
    epochs:Epochs
           The data.
    Returns
    ------------
    
    X:numpy array of shape[n_samples,5]
        Transformed data.
        
    '''
    #特定频带
    FREQ_BANDS={'delta':[0.5,4.5],
               'theta':[4.5,8.5],
               'alpha':[8.5,11.5],
               'sigma':[11.5,15.5],
               'beta':[15.5,30]}
  
    psds,freqs=psd_welch(epochs,picks='eeg',fmin=0.5,fmax=30.)
    #归一化  PSDs
    psds/=np.sum(psds,axis=-1,keepdims=True)
    
    X=[]
    for fmin,fmax in FREQ_BANDS.values():
        psds_band=psds[:,:,(freqs>=fmin)&(freqs<fmax)].mean(axis=-1)
        X.append(psds_band.reshape(len(psds),-1))
        
    return np.concatenate(X,axis=1)

第五步:根据Alice的数据来预测Bob的睡眠阶段
使用scikit-learn进行多分类
下面展示了解决如何从爱丽丝的数据中预测Bob的睡眠阶段并尽可能避免重复样板代码的问题,这里将利用scikit-learn的Pipeline和Function Transformer
扩展:[Pipeline可以将许多算法模型串联起来,可以用于把多个estamitors级联成一个estamitor,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流。
FunctionTransformer将python函数转换为与estamitor兼容的对象。]

pipe=make_pipeline(FunctionTransformer(eeg_power_band,validate=False),
                  RandomForestClassifier(n_estimators=100,random_state=42))

#训练
y_train=epochs_train.events[:,2]
pipe.fit(epochs_train,y_train)


#预测
y_pred=pipe.predict(epochs_test)

#评估准确率
y_test=epochs_test.events[:,2]
acc=accuracy_score(y_test,y_pred)

print('Accuracy score:{}'.format(acc))

在这里插入图片描述
准确率达到了85.3%

####查看分类报告做进一步分析

print(classification_report(y_test,y_pred,target_names=event_id.keys()))

在这里插入图片描述
学起来还是有一些懵懵懂懂,继续加油!

  • 0
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值