PANet

前言

参考:

FPN proposal

什么是FPN神经网络?如下图,就是基于特征金字塔的网络结构。具体可回顾yolov3的FPN章节。

什么是proposal?根据论文原文,proposal就是预测框的意思。

In ablation experiments, we find that for bounding box proposals, FPN significantly increases the Average Recall (AR) by 8.0 points; …

什么是stage和level?输出同一level特征图的神经网络层都处于同一个stage。

主要工作

如下图所示,本文提出了PANet。

  1. 首先,缩短了信息路径,并且为了用低层准确的定位信息加强特征金字塔,创建了bottom-up path augmentation。
  2. 提出了可适应池化。在生成某层预选框时,融合各层的特征作池化。
  3. 最后,预测阶段可有两种任务,本文对mask预测任务进行改良,引入了全连接层,提供补充信息。

前两个组件是在对象检测、实例分割任务中都共享的,从而能导出更好的效果。下图是PANet的架构。

如上图架构所示,用了路径增强和路径融合两种做法提高模型效果。

  1. 路径增强时指:提出了bottom-up路径,使得底层的信息更容易传播。
  2. 路径融合是指:adaptive feature pooling,让预测框能拿到各种层级的信息用于预测。

bottom-up结构

是什么

如下图所示,

为什么

首先,高层与底层的特征各有优点:

  • 高层特征的语义较强,通常对整个物体作响应。
  • 底层特征的定位能力较强,通常对局部纹理和模式作响应。

FPN增强了top-down路径,将高层的语义特征传递到底层,并增强分类能力。

那么反过来,如果底层的纹理信息能顺利传递到高层,也能改良高层特征的定位能力。然而,现有结构的传递效率低,比如FPN的特征沿着卷积路径从底层传递到高层,需要经历100+个神经层(下图红色虚线)。然而,如果沿着本文的bottom-up路径,从底层传递到高层,仅需要经历不到10个神经层(下图绿色虚线)。所以说,bottom-up路径加强了底层特征向顶层传递的效率,减少了损耗,提升了顶层特征的定位能力,从而改善模型性能

怎么做

P i + 1 P_{i+1} Pi+1的尺寸是 N i N_i Ni尺寸的一半,所以需要用stride=2的3x3卷积将后者的尺寸减半,然后相加,即可得到 N i + 1 N_{i+1} Ni+1

adaptive feature pooling

操作过程

首先,我们要计算4组proposals,每次计算一组,都要使用4个layer的可视化pool结果。

可适应pooling操作是如何完成的?下图(c)是计算某组proposals下某个像素时进行的操作。可以看到,首先对4层各自作卷积,将4个结果用max pooling计算得到一个像素值。所有像素值合起来就是一组proposals的特征图了。使用ROIAlign操作可以保证从4层特征各自卷积,输出的尺寸是一致的。

具体操作也可参考知乎链接PANet:升级版Mask R-CNN

为了得到更优的结果,PANet 索性将每个Proposal 在N2~N5对应区域(结构图b. 灰色区域)的特征都用上,具体使用方法为:
1、使用 RoIAlign 对其进行提取得到 4 组相同shape的特征图。
2、对4组特征进行融合,可以是sum、max、product。
3、使用融合后的特征图进行分类、bbox预测、mask预测。

如何理解下图表格?从4个层的同一像素位置融合时,使用max pool肯定会选中4层中的其中一个像素,那么就统计下到底来自哪个层的像素被选中了,并计算比例。

因为我们后续融合时不是要做max融合嘛,这样我们可以看看到底是哪个level被选中了,这样计算一些比例。

这样是为了说明,其实在4个layer里,每个layer都可能选中来自其它layer的卷积输出,这就证明了对4层卷积输出作max pooling融合的重要性

ROIAlign

那么ROIAlign是如何保证对不同尺寸的特征层做卷积,仍然能输出一致的?初步思考可知,应该对各层用的卷积核大小、步长各不相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值