人工神经网络主要架构是由神经元、层和网络三个部分组成。整个人工神经网络包含一系列基本的神经元、通过权重相互连接。
神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后一层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一个神经网络。
输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。
假如输出单元的输出值和所预期的值相同,那么连接到此输出单元的链接强度则不被改变。但如果应该输出1的单元却输出0,那么连接到这个单元的链接强度则会被加强。相反,如果应该输出0却输出1,那么连接到此输出单元的链接强度则会被降低。简单地说,达成收敛的效果是这个学习程序的主要目标。目前尚没有统一的标准方法可以计算人工神经网络的最佳层数。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
神经网络主要的研究内容是什么,有什么特点?
http://www.duozhishidai.com/article-2008-1.html
什么是神经网络,深度神经网络怎么分类的,主要是做什么的?
http://www.duozhishidai.com/article-1174-1.html
人工神经网络是什么,人工神经网络的的优点有哪些?
http://www.duozhishidai.com/article-1157-1.html