VaR 和 ES (Expected Shortfall) 的区别


上图中,A的面积是95%,B和C的面积相等,都是2.5%,a是B和C的交界点。

看这幅图的时候,我突然有一个错觉:
(1)97.5%的VaR是a;
(2)根据ES的计算公式,95%的ES将会正好位于B和C的交界点,也等于a;
(3)这样的话,97.5%的VaR和95%的ES不就是一回事吗?

仔细分析发现,上面的想法的错误在于:95%的ES并不一定位于B和C的交界点。
(1)B和C的交界点,是根据计算面积使得左右两边面积相等而得到的。假设上图中的概率密度函数是 f ( x ) f(x) f(x),那么计算面积是对 f ( x ) f(x) f(x) 求积分。
(2)而ES是对 x x x 的概率加权平均,即对 x f ( x ) xf(x) xf(x) 求积分。
(3)这两个积分,并没有必然联系。

为了使得对比更加明显,假设上图中C被拆成D和E两部分,D和E的面积之和仍是2.5%,其他不变,如下图:

这两幅图中的97.5%的VaR都是a,但是95%的ES明显不同,下面一幅图的ES明显更大一些。如果区域E的位置更加靠左,那么ES还会更大。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值