上图中,A的面积是95%,B和C的面积相等,都是2.5%,a是B和C的交界点。
看这幅图的时候,我突然有一个错觉:
(1)97.5%的VaR是a;
(2)根据ES的计算公式,95%的ES将会正好位于B和C的交界点,也等于a;
(3)这样的话,97.5%的VaR和95%的ES不就是一回事吗?
仔细分析发现,上面的想法的错误在于:95%的ES并不一定位于B和C的交界点。
(1)B和C的交界点,是根据计算面积使得左右两边面积相等而得到的。假设上图中的概率密度函数是
f
(
x
)
f(x)
f(x),那么计算面积是对
f
(
x
)
f(x)
f(x) 求积分。
(2)而ES是对
x
x
x 的概率加权平均,即对
x
f
(
x
)
xf(x)
xf(x) 求积分。
(3)这两个积分,并没有必然联系。
为了使得对比更加明显,假设上图中C被拆成D和E两部分,D和E的面积之和仍是2.5%,其他不变,如下图:
这两幅图中的97.5%的VaR都是a,但是95%的ES明显不同,下面一幅图的ES明显更大一些。如果区域E的位置更加靠左,那么ES还会更大。