1.traingd:批梯度下降训练函数,沿网络性能参数的负梯度方向调整网络的权值和阈值.
2.traingdm:动量批梯度下降函数,也是一种批处理的前馈神经网络训练方法,不但具有更快的收敛速度,而且引入了一个动量项,有效避免了局部最小问题在网络训练中出现.
3.trainrp:有弹回的BP算法,用于消除梯度模值对网络训练带来的影响,提高训练的速度.(主要通过delt_inc和delt_dec来实现权值的改变)
4.trainlm:Levenberg-Marquardt算法,对于中等规模的BP神经网络有最快的收敛速度,是系统默认的算法.由于其避免了直接计算赫赛矩阵,从而减少了训练中的计算量,但需要较大内存量.