不同的神经网络训练函数training function的比较

本文对比了多种神经网络训练函数,包括批梯度下降、动量批梯度下降、有弹回的BP算法、Levenberg-Marquardt算法等,讨论了它们的特性和适用场景,如速度、内存需求和精度差异。
摘要由CSDN通过智能技术生成

1.traingd:批梯度下降训练函数,沿网络性能参数的负梯度方向调整网络的权值和阈值.

2.traingdm:动量批梯度下降函数,也是一种批处理的前馈神经网络训练方法,不但具有更快的收敛速度,而且引入了一个动量项,有效避免了局部最小问题在网络训练中出现.

3.trainrp:有弹回的BP算法,用于消除梯度模值对网络训练带来的影响,提高训练的速度.(主要通过delt_incdelt_dec来实现权值的改变)

4.trainlm:Levenberg-Marquardt算法,对于中等规模的BP神经网络有最快的收敛速度,是系统默认的算法.由于其避免了直接计算赫赛矩阵,从而减少了训练中的计算量,但需要较大内存量.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值