前面对人脸对齐的生成模型的经典方法进行了一个简单介绍,接下来,我将逐步介绍人脸对齐判别模型的一些经典文章,但是首先,我们对判别模型的一些经典工作做一个梳理。
简单理解判别模型的做法直接找到一个映射函数,直接映射面部表观到人脸特征点位置。围绕这个目的,判别模型分成了两个方向的工作。
一、局部映射加整体约束策略:对每一个特征点构造映射函数,利用全局形状作为约束,来限制每个局部特征点的位置搜索。
这个大方向下又可以进一步细分三种经典方法
1、CLMs方法:限制局部约束模型,其做法基本就是按照这个思路来的。
2、CLR方法:限制局部回归模型,其做法就是对每一个特征点学习一个局部回归函数,区别是CLR利用图模型来对每一个局部回归函数来加约束来限制局部回归符的搜索。
3、DPM方法:局部可变部分模型,其典型做法就是,通过学习一个局部表观模型,加上一个树结构模型对人脸面部形状进行搜索。
二、第二个大的方向及时直接学习一个向量回归函数,将人脸表观直接映射到面部形状。(这个方法是目前深度学习用到的最多的,人脸形状直接被编码在序列向量中)
该方法可进一步划分:
1、综合回归投票(ensembel regression-voting):对所有的基于局部回归的特征点进行一个综合投票,这样选出一个鲁棒性的形状预测。
2、级联回归方法:直接学习一个向量回归函数,加上boosting的思想,对人脸形状进行估计。
3、深度神经网络:直接利用神经网络强大的非线性建模能力,在人脸表观和人脸形状之间进行建模。
详细见下图:
首先我们这里说一下CLM方法,相似的工作我们可以谈到前面讲到的ASM方法,CLM是学习局部检测符来检测每一个面部特征点,一个先验的形状模型来表征人脸形状的变化,这里之所以将CLM方法归为判别方法这一类别中,是因为一般的检测符是基于判别模型的。
后面首先对基于CLM方法的经典工作做一个介绍。