全文共3220字,预计学习时长6分钟
图片来源:https://www.pexels.com/photo/blur-clock-clock-face-close-up-280361/
在2007年,早在AI热潮推动“深度学习”和“神经网络”成为硅谷的流行语之前,人工智能界的大咖Learned-Miller和马萨诸塞州阿默斯特分校的三位同事发布了一个名为“Labeled Faces in the Wild”的人脸数据集。
对你我来说,Labeled Faces in the Wild这个人脸数据集看起来就像一个不起眼的图像文件夹,可以下载图像并寻找自己。里面有张亚历克·鲍德温(Alec Baldwin)指着镜头外某个人的照片,有哈莉·贝瑞(Halle Berry)在奥斯卡颁奖典礼上微笑的照片,还有拳击手乔·加蒂(Joe Gatti)在中场比赛中举起手套的照片。但对于人工智能算法而言,这些文件夹包含着模拟人脸意义的精髓。
图片来源:马萨诸塞大学阿默斯特分校
这就是Labeled Faces in the Wild(通常缩写为LFW)为何如此重要的原因。在过去十年中,它经常被一些最有影响力的人脸识别研究所引用。在2014年和2015年,当谷歌和Facebook在人脸识别准确性方面进行竞争时,最常见的测试就是对LFW这个不变数据库中的图像进行性能分类。LFW前前后后被引用过3500次,引用者包括微软和斯坦福大学的研究人员、中国和香港的计算机科学家以及最先负责神经网络的杰弗里·辛顿(Geoff Hinton)等人。
这十分重要。
但如今人工智能也是一项重大业务,Learned-Miller正在考虑如何管控这项技术。他现在的主要观点是:像美国食品药品监督管理局监管医疗器械行业一样去监管人工智能。对此,他还没有为这个机构想到官方的名称,但正在考虑的一个想法是:将其命名为FDA 2号:人脸识别和检测机构。
其中的问题就是面部识别工作并不尽如人意。研究表明,在现实世界中使用人脸识别会存在偏差:与深肤色人群相比,人脸识别更擅长识别浅肤色人群,也更擅长对男性的图像进行分类。原因在于用算法来学习不同人脸差异的数据库存有偏差。例如,LFW的图像主要以白人男性为主。因此,在数据集上训练的算法在处理超出这些参数的人脸时自然就会出现问题。
2019年的科技格局与2007年LFW首次发布时的科技格局大有不同。人们今天熟知的人工智能主要集中在研究上,只有少数学校对所谓的神经网络感兴趣,如纽约大学和多伦多大学。
今天,人工智能可以并且也正在现实世界中使用。联网摄像机可以将图像发送到数据中心,实时进行面部识别,而智能手机(如具有FaceID的新型iPhone)通常把面部识别用作安全性能。政府机构也对面部识别产生了浓厚的兴趣。多年来,联邦调查局一直使用基于驾照和护照照片的人脸识别来进行执法而很少受到监督。国会最近在众议院监督委员会听证会上对此提出了质询。10年前进行的研究现在触手可得。
对于Learned-Miller而言,这项研究始于20世纪80年代和90年代的一个简单想法:人类非常善于识别面孔。人类识别数百万张不同面部的技能可用于其他计算机视觉任务,因此复制这种能力对于推进人工智能意义重大。
“从科学的角度看,人们面部识别的能力直到最近才被认为非常好,”Learned-Miller告诉科技公司OneZero。“人类能大量接触到不同人脸,正确辨别这些人脸十分重要。正是如此人类才不断进化并学着去辨别其他人。这项能力非常有趣。”
Learned-Miller讲述了一个故事:当时他走在旧金山的街道上,他认出了一个25年来都未曾见过的人。即使他们的脸因年龄发生了改变,而且Learned-Miller在这25年间见了数百万张面孔,但他的大脑仍然能够认出并记起这个人是谁。
Learned-Miller表示,2007年的计算机人脸识别不论在哪一方面都无法企及人类水平。在人脸识别偏差成为一个问题之前,研究人员只想让它有效地工作。
不准确的人脸识别可能会带来不同严重程度的问题。较轻的问题包括也许某个智能手机无法识别深色皮肤的面孔以及有照明的肖像。严重的问题包括比如像谷歌照片这样的产品可能会把黑人与关键词“大猩猩”联系起来。或者,不准确的人脸识别可能会导致执法人员错将他人认为犯罪嫌疑人。
这让Learned-Miller陷入了一个不安的境地:人脸识别这项技术已经运用在世界各地,并未以应有的方式得以运用。Learned-Miller表示已经获得了资助,可以搭建另一个大型的人脸识别数据库,但是为了继续研究如何搭建更公平以及更符合欧洲GDPR等新数据法则的人脸识别数据集,Learned-Miller一一婉拒了赞助者。
“你可能会说最简单的方法就是停止研究,但实际上这个出路并不可行,因为现在已经有不公平的[数据集]了。”Learned-Miller表示。“我们陷入了这种疯狂的束缚中,看起来似乎没有好的方向可走,但其实我们也没有处在一个好的位置。”
Learned-Miller提出的FDA 2号解决方案不是要放弃研究,而是要规范面部识别的使用方式。他的想法是效仿美国食品药品监督管理局(FDA)对医疗器械的清关程序。由于医疗器械的不同局限性可能意味着生与死的区别,因此美国食品药品监督管理局要求对包括导管到手术工具在内的所有医疗器械都要进行详尽的测试,这被称为510(k)许可。
“我曾经在医疗器械行业工作过,所以写了很多这些东西。这些都是数据十分庞大的文件,可以提供研究成果和其他所有信息,”Learned-Miller表示。“这方面的很多内容都非常适合用于面部识别。其中包括计划好的使用途径以及支持这一途径的数据。
“当然,相反的情况就会出现一些限制。比如,我们从来没有在夜间图像上测试过这个软件;因此不应该使用该软件测试夜间图像。我们从未对15岁以下的孩子进行测试,因此也不可以用在15岁以下的孩子身上。”
LFW不会朝着其他方向发展,也不会发生改变。这是因为LFW不能这么做,它最重要的一点就是保持不变。这是一个基准测试,人们可以在同一级别的竞争环境中测试算法。
图片来源:https://www.pexels.com/@rawpixel
但LFW可以利用信息披露。Learned-Miller表示,这个数据集并不是用来测试一种算法是否适用于现实世界。就像一种药物可能会标有警告一样......面部识别系统也可以标记上“可以做”和“不可以做”的标签,清楚地概述用户所期待的内容。
“我可能很快就会这样做,在LFW网站上放一些免责声明。比如,软件在数据库测试上表现良好并不意味着该软件就可以部署了。”他表示。“这并不能表明你的人脸识别能力已经准备好了。我想大多数人都明白这一点,但也有些人不了解。数据集里没有孩子,也没有很多老人,而且里面的女性也不多。”
这又回到了Learned-Miller提出的FDA 2号这一想法。美国食品和药物管理局的存在就是为了确保药店货架上的补充剂不会对消费者造成伤害。但即使面部识别使用不当会带来致命的后果,目前也没有对面部识别的监管。正如一种药物可能会标有警告:服用该药物的人不应该饮酒或使用重型机械,面部识别系统也可以清楚地标明可做事项和禁止事项,并概述用户的预期。
“这些重要的标准机制可以显著提高药物疗效和安全性。”Learned-Miller表示,“没有人会想回到没有食品药品监督管理局的日子。所以我认为这是可行的,但需要时间。”
留言 点赞 发个朋友圈
我们一起分享AI学习与发展的干货
编译组:李林虹、余昊烨
相关链接:
https://onezero.medium.com/an-a-i-pioneer-wants-an-fda-for-facial-recognition-cdde309cf553
如需转载,请后台留言,遵守转载规范
推荐文章阅读
长按识别二维码可添加关注
读芯君爱你