7条人命、潜逃23年,“整容逃犯”劳荣枝竟被“它”一眼认出!

全文共3528字,预计学习时长11分钟

 图源:微博

12月3日,身负7条人命的“女魔头”劳荣枝在厦门某商场被抓,此时,她正在该商场的一手表专柜上班。

 

 图源:微博

 

这对人间恶魔——劳荣枝与法子英1996年开始为祸人间,两人分工明确,劳荣枝负责用美貌勾引有钱男子并带回住处,法子英则负责突袭、控制与杀害,最后由两人对尸体进行肢解、抛尸。

 

丧失人性的两人用同样的方法先后杀害了7人,其中包括3名女性与1名3岁的儿童。

 

手上有7条人命,潜逃23年,朋友圈毫无异常,若无其事地上班……如果不是这次抓捕再次将劳荣枝的斑斑恶行重现于众人眼前,或许劳荣枝自己都快认为她与常人没有什么不同,也快忘了自己身上背负的深重罪孽吧。

 

图源:厦门警方在线微博

 

犯罪者永远不可能回归正常生活,终要为当初的一切罪行付出代价。

 

潜逃20年,她最终败给了AI

 

劳荣枝案件虽相隔数十年,但是仍引发了网友们的广泛讨论。话说这几十年来,劳荣枝到底使用了什么样的手段,让公安部门硬是将这件案子搁置了如此之久还尚无头绪?

 

90年代,使用的还是无芯片、无防卫的第一代身份证,黑市上买卖假身份证十分普遍。没有人脸识别、DNA技术尚未普及的年代,一张假的身份证,就足以让犯罪分子的真实身份难以辨认。即便使用真实身份,信息也没有联网。一起案件,一旦跨市、跨省,追查难度就加大不少。

 

根据警方消息,这二十几年间,除了使用假身份证“易名”,劳荣枝还通过整容使自己“改头换面”,因此在警方将其抓捕后甚至毫不慌张地否认自己的身份,镇定自若地否定了自己的一切罪行……

 

 

而在警察拿出DNA比照结果时,42岁的劳荣枝才开始掩面而泣默认身份。

 

图源:微博

二十年,一个人的外貌变化可想而知,并且劳荣枝还整过容,可以说几乎是外表完全不同的两个人了。

 

 图源:厦门警方微信公众号

 

根据厦门警方称,大数据研判系统是这次抓捕成功的“功臣”。

 

何为大数据研判系统?公安大数据合成研判系统,通过“物联网”技术进行身份、车牌、人脸、手机、指纹和声音等信息录入采集,传输至平台,并与公安已有数据资源对接,进行大数据深层挖掘和智能研判应用。

 

它不仅可以对人员、车辆、事件等实时监控报警,还可以对比历史数据进行分析研判合成,从而做到提前布控和精准拦截,为公安人员提供有力的数据支撑。

 

图源:公安系统网

 

劳荣枝作为在逃人员,其相关信息早已录入公安部门的系统之中,只要她出现在摄像头内,就可以根据其头像与公安系统中的数据进行对比,从而做到精准匹配。

 

因此,即便这二十几年里劳荣枝已经改名换姓、整容,从我们的肉眼来看,她的面相看上去发生了很大的改变,例如发型、胖瘦、皮肤的光泽等,但是她的颅骨是相对稳定的,且瞳距、虹膜也是不会发生太大的变化。所以,以深度学习为基础的人脸识别技术,才能认出来她就是逃犯。

 

图源:百度

 

劳荣枝不会想到,隐姓埋名20年后,竟然是技术使她露出了马脚。

 

万物互联下,罪犯无所遁形

 

劳荣枝案件,让我想到了今年四月份轰动一时的“北大弑母案”主人公吴谢宇的落网。同样是时隔4年之久,隐藏多年的吴谢宇最终在重庆江北机场被抓获,通过摄像头的扫描捕获其头像,最后警方通过大数据比对对其实行精准抓捕。

 

图源:“我们”秒拍视频

被称为“逃犯克星”的张学友,其演唱会一度成为警察蜀黍们的重点盯梢地,2018年的张学友巡回演唱会中共有60名左右的逃犯被抓,仅苏州站演唱会上就有22位逃犯被警察成功抓获,这同样涉及到人工智能与大数据技术。

 

 

据了解,目前我国人脸识别技术主要应用在金融和安防这两大领域。这些年,人脸识别技术早已不再像之前一样高不可攀,从一开始的刷脸进火车站、支付宝的“smile to pay”开始露面到现在的随便走进一家超市就可以使用刷脸支付,人脸识别技术已经触及到我们生活的各方面了。

 

图源:产城观察网

 

虽说人脸识别技术主要应用于刷脸支付与车站安检,但是在2017年,被拐27年的付某在人脸识别的帮助下,见到了自己多年的亲人。而寻亲者提交的是付某4岁时的照片,付某自己提供的是10岁时的照片。对于儿童来说,这几年的相貌变化是非常大的,仅凭肉眼是很难判断出来这是同一个人的。

 

但是人脸识别技术会根据所提取的面部特征(眉毛、眼睛、鼻子、脸部轮廓等)来进行比对,并计算出总体的匹配度得分,给出两张脸的相似程度。

 

图源:百度

根据相关数据显示,中国每年的失踪儿童大约有7万人,而能够找回来的大概只占5%。虽然我国拐卖儿童案件已经呈现出“低发高破”态势,但是仍受时间、距离、信息不对称等因素限制,“寻亲”的难度依然很大,并且往往由于儿童年纪小、记忆缺少、面貌化大从而使得很多拐卖儿童的案件难上加难,很多拐卖儿童案件由此陷入僵局。

 

电影《亲爱的》里面的主人公原型孙海洋也尝试了用人脸识别系统来寻找儿子,当地公安部门找来山东画像专家,比对当年照片,画下了孙海洋的儿子孙卓14岁的肖像。

 

图源:解放网

 

香港中文大学教授贾佳亚认为,“在今天,随着人工智能技术的发展和应用,一个古老的犯罪类型——拐卖儿童,正在被技术逐渐瓦解。”

 

最早将人脸识别技术用于寻找失踪儿童的是美国的艾米莉·肯尼迪开发的系统“Traffic Jam”,其中有一个叫“FaceSearch”的人脸识别功能。

 

 

消息称,这一功能允许警方将儿童的人脸同出现在“儿童色情贩卖广告”中的人脸进行识别、对比,而且用于对比的图片可以来自Facebook、其他社交媒体或者是警方的失踪人口名单中,并可以在很短时间内确定可能被贩卖儿童的身份。

 

而最新的人脸识别技术能够让人工智能深度学习五官的成长规律,凭借一张孩子儿时的照片,实现跨年龄识别人脸。截至目前,这项技术的应用,已协助我国警方成功找回了多名十几年前被拐卖的孩子。

 

如果将人脸识别技术更为广泛地应用在寻找被拐卖儿童上,这或许将会是最受期待的人脸识别技术功能运用的领域吧。

 

图源:腾讯新闻

 

人脸识别并非万能的“超级英雄”

 

人脸识别技术虽在中国发展的如火如荼,但是在美国早已发展成熟,20年前的好莱坞电影《007》中就有脸部识别以及DNA对比的操作场景。然而在今年5月份,美国旧金山对人脸识别技术发出了禁令,禁止该技术在政府机关和执法机关中使用,从而成为全球首个对人脸识别技术发出禁令的城市。而美国很多大城市都紧随其后。

 

图源:007电影截图

美国为何对人脸识别技术如此抵触从而发出禁令,首先一方面是因为精确度。据消息称,美国巨头公司亚马逊推出图像识别AI系统「Rekognition」曾将 28 名美国国会议员识别成了罪犯,这使得美国社会一片哗然,也对人脸识别技术充满了质疑。

 

纽约时报曾指出,如今非常热门的 AI 应用人脸识别,针对不同种族,准确率的差异巨大。其中,针对黑人女性的错误率超过20%,而针对白人男性的错误率则低于 1%。而这在美国无疑会极其遭到抵触。

 

对于我国的人脸识别技术来说,其实也存在这方面的问题,例如,如果犯罪分子通过“削骨”等手段来改变自己的脸型,甚至通过吃胖(当然,是在短时间内使自己迅速变胖,并且在此期间尽量不被摄像头捕捉到头像)使自己的脸型难以辨认,这就会对人脸识别系统的准确度造成一定的偏差。

 

图源:百度

另一方面,人脸识别技术依赖大数据,而数据隐私问题也同样是目前技术发展下十分令人头疼的问题了。我相信不管是谁,即便自己没有做任何违法的事情,也不希望自己每日的一举一动完全被监控,完全暴露在别人的眼前吧……

 

图源:360慧聪网

 

我国的大数据与人工智能产业的发展对相关法律也提出了一系列新的问题,法律的滞后性在一定程度上“放任”了一些不法行为。

在云环境中,个人数据安全风险存在与数据存储、传输、处理及销毁等全生命周期中,涉及政府、数据控制者、数据处理者、数据主体等多方主体参与者,责任主体的多元化使得责任认定难度增加。

 

并且,学界提出了“科技伦理学”的概念,这个概念也是在科学技术被过度应用之后而被提出来的,认为技术使用也需要伦理的约束。

 

在应用层面上,如何防止人脸识别技术的过度应用,如何防止个人数据被盗取,如何让防止不乏分子用技术生成虚假人脸来盗取钱财等等,

  

科学技术永远是中性的,但是没有约束的科技是危险的,而科技伦理也不应该是技术发展的障碍。作为技术的使用者应该牢记伦理规范的边界,使得科技伦理成为引导科技向善的路标,这才是科技伦理在当下所具有的现实意义吧。

我国的人脸识别技术在发展的势头上,并且还会需要更长的时间来发展和完善,如何引领技术用在好的方向上是值得去思考的。

 

人脸识别技术在中国最终会发展至何种地步我们也无法猜测,但是相信,科技的进步也是我们法制社会的进步,将其运用在减少犯罪上,让违法者心怀忌惮,就是这项技术的使用意义之一吧。

推荐阅读专题

留言 点赞 发个朋友圈

我们一起分享AI学习与发展的干货

如需转载,请后台留言,遵守转载规范

推荐文章阅读

ACL2018论文集50篇解读

EMNLP2017论文集28篇论文解读

2018年AI三大顶会中国学术成果全链接

ACL2017 论文集:34篇解读干货全在这里

10篇AAAI2017经典论文回顾

长按识别二维码可添加关注

读芯君爱你

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网设备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主机和从机模式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多点数据通信网络,具有传输距离远、抗干扰能力强的特点。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主机(Master)和一个或多个从机(Slave),主机负责发起通信,从机响应主机的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些设置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测与处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主机向从机发送请求报文,从机会根据接收到的功能码执行相应的操作,并返回响应报文。 在主机端,你需要实现发送请求和接收响应的函数,以及解析从机返回的数据。在从机端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
内容概要:本文档详细介绍了一个使用Python实现最小二乘支持向量机(LSSVM)进行时间序列预测的项目实例。项目背景指出,传统的时间序列预测方法在处理非线性、复杂数据时存在局限性,而LSSVM通过将SVM的二次规划问题转化为线性方程组求解,提高了计算效率和预测精度。项目目标包括数据预处理、特征提取、模型构建、模型评估、优化与调参以及可视化展示。项目挑战主要集中在数据质量、模型泛化能力、计算效率、模型解释性、实时性和超参数优化等方面。项目特点与创新体现在高效的预测算法、多样化的数据处理方法、自动化的特征提取、多维度的模型评估、可视化的结果展示和高效的超参数优化。最后,文档展示了模型架构和具体的代码实现,包括数据预处理、LSSVM模型的构建与训练、预测和评估。 适合人群:具备一定编程基础,特别是对Python和机器学习有一定了解的研发人员,尤其是从事时间序列预测相关工作的数据科学家和工程师。 使用场景及目标:①适用于金融、气象、交通、能源、医疗、制造业和零售业等领域的时间序列预测任务;②帮助用户理解LSSVM算法的工作原理及其相对于传统SVM的优势;③通过实际代码示例,指导用户如何实现和优化LSSVM模型,以提高预测精度和处理大规模数据的能力。 阅读建议:本项目不仅提供了详细的理论背景和技术细节,还包含了完整的代码实现和可视化工具,因此在学习过程中,建议读者结合代码逐步实践,并通过调整超参数和实验不同的数据集来加深对LSSVM的理解。同时,注意数据预处理和特征提取的重要性,这对模型性能有着关键影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值