有了K均值聚类,为什么还需要DBSCAN聚类算法?

全文共3138字,预计学习时长16分钟

 

有了K均值聚类,为什么还需要DBSCAN聚类算法?

图源:unsplash

 

聚类分析是一种无监督学习法,它将数据点分离成若干个特定的群或组,使得在某种意义上同一组中的数据点具有相似的性质,不同组中的数据点具有不同的性质。

 

聚类分析包括基于不同距离度量的多种不同方法。例如。K均值(点之间的距离)、Affinity propagation(图之间的距离)、均值漂移(点之间的距离)、DBSCAN(最近点之间的距离)、高斯混合(到中心的马氏距离)、谱聚类(图之间距离)等。

 

有了K均值聚类,为什么还需要DBSCAN聚类算法?

 

2014年,DBSCAN算法在领先的数据挖掘会议ACM SIGKDD上获得the testof time奖(授予在理论和实践中受到广泛关注的算法)。

 

所有聚类法都使用相同的方法,即首先计算相似度,然后使用相似度将数据点聚类为组或群。本文将重点介绍具有噪声的基于密度的聚类方法(DBSCAN)。

 

既然已经有了K均值聚类,为什么还需要DBSCAN这样的基于密度的聚类算法呢?

 

K均值聚类可以将松散相关的观测聚类在一起。每一个观测最终都成为某个聚类的一部分,即使这些观测在向量空间中分散得很远。由于聚类依赖于聚类元素的均值,因此每个数据点在形成聚类中都起着作用。

 

数据点的轻微变化可能会影响聚类结果。由于聚类的形成方式,这个问题在DBSCAN中大大减少。这通常不是什么大问题,除非遇到一些具有古怪形状的数据。

 

使用K均值的另一个困难是需要指定聚类的数量(“k”)以便使用。很多时候不会预先知道什么是合理的k值。

 

DBSCAN的优点在于,不必指定使用它的聚类数量。需要的只是一个计算值之间距离的函数,以及一些将某些距离界定为“接近”的指令。在各种不同的分布中,DBSCAN也比K均值产生更合理的结果。下图说明了这一事实:

 

有了K均值聚类,为什么还需要DBSCAN聚类算法?

 

有了K均值聚类,为什么还需要DBSCAN聚类算法?

 

基于密度的聚类算法

 

基于密度的聚类是无监督学习法,基于数据空间中的聚类是高点密度的连续区域,通过低点密度的连续区域与其他此类聚类分离,来识别数据中独特的组/聚类。

 

具有噪声的基于密度的聚类方法(DBSCAN)是基于密度聚类的一种基本算法。它可以从大量的数据中发现不同形状和大小的聚类,这些聚类中正包含着噪声和异常值。

 

DBSCAN算法使用以下两种参数:

 

· eps (ε):一种距离度量,用于定位任何点的邻域内的点。

· minPts:聚类在一起的点的最小数目(一

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值