别再对分类变量进行独热编码!你还有更好的选择

独热编码虽常见,但会增加维度并可能导致稀疏性问题。目标编码、留一法编码、正态噪声编码和贝叶斯目标编码等方法提供了解决方案。这些监督编码器在考虑目标变量的情况下,可能在预测任务中更为有效。非线性PCA则为处理分类变量提供了新的思路。
摘要由CSDN通过智能技术生成


全文共2380字,预计学习时长6分钟

图源:unsplash

 

独热编码(又称虚拟变量)是一种将分类变量转换为若干二进制列的方法,其中1表示存在属于该类别的行。显然,从机器学习的角度来看,它并不适合对分类变量进行编码。

 

很明显,它增加了大量的维度,但通常来说维数越小越好。例如,如果设置一个列代表美国的州(例如加利福尼亚州、纽约州)的话,那么独热编码方案将会多出50个维度。

 

这样做不仅会为数据集增加大量维度,而且实际上并没有太多信息——大量0中零散分布着几个1。这造成了一个异常稀疏的景观,使得优化难以进行。对于神经网络来说尤其如此,其优化器在大量的空白维度中很容易进入错误的空间。

 

更糟糕的是,每个信息稀疏列之间都具有线性关系。这意味着一个变量可以很容易地使用其他变量进行预测,从而可能导致高维的并行性和多重共线性问题。

 

 

最佳数据集包含了信息具有独立价值的特征,而独热编码可创建一个完全不同的环境。当然,如果只有三个或甚至四个类,那么独热编码可能不是一个糟糕的选择。不过根据数据集的相对大小,其他的替代方法有可能值得一探。

 

目标编码可以有效表示分类列,而且仅占用一个特征空间。它也称为均值编码,该列中的每个值都被该类别的平均目标值代替。这样可以更直接地表示分类变量和目标变量之间的关系,并且这也是一种非常流行的技术(尤其是在Kaggle比赛中)。

 

 

这种编码方法有一些缺点。首先,它使模型更难以学习均值编码变量和另一个变量之间的关系。它只能根据它与目标的关系在在列中绘制相似性,这有利有弊。

这种编码方法对y变量非常敏感,会影响模型提取编码信息的能力。

你的问题是关于数据预处理的,我的回答如下: 1. 检查数据集是否有缺失值,并对缺失值进行处理。缺失值会影响模型的准确性和可靠性,可以使用fillna()函数或者dropna()函数来填充或删除缺失值。 2. 对数值型特征进行归一化或标准化操作。归一化可以将不同特征的值缩放到相同的区间内,而标准化可以将特征值转换为均值为0,方差为1的标准正态分布。 3. 对分类变量进行独热编码或标签编码。独热编码可以将分类变量转换为二进制向量,而标签编码可以将分类变量转换为整数。 4. 去除重复的数据行或列。可以使用drop_duplicates()函数去除完全重复的行,或者使用duplicated()函数进行重复行的检测和删除。 5. 对异常值进行检测并进行处理。可以使用箱线图或3σ原则等方法检测异常值,并根据具体情况进行处理,如替换为中位数或删除。 6. 对文本数据进行分词、去停用词等操作。可以使用nltk等自然语言处理库对文本数据进行处理,如分词、去停用词、词干提取等。 7. 对时间序列数据进行降采样或升采样操作。可以使用resample()函数对时间序列进行降采样或升采样,以调整时间间隔和频率。 8. 对数据进行特征选择或降维操作。可以使用PCA等算法对数据进行降维,或者使用特征选择算法对数据进行筛选和提取,以减少特征的维度和复杂性。 9. 对数据进行划分为训练集和测试集。可以使用train_test_split()函数将数据集划分为训练集和测试集,以进行模型的训练和评估。 10. 对数据进行随机打乱或按照某个特定顺序进行排序。可以使用shuffle()函数对数据进行随机打乱,或者使用sort_values()函数按照某个特定顺序进行排序,以增加数据的随机性和多样性。 希望我的回答能够帮助你更好地理解数据预处理的步骤和方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值