招聘官有话说:数据科学部门想看到什么样的简历?

全文共2999字,预计学习时长8分钟

图源:unsplash

 

我们筛选一份简历只需要7.4秒。有了几年的招聘经验后,我筛选简历的平均速度已经相当快了,但仍有进步的空间。

 

想知道我们是依据什么筛选简历的么?本文就将为你揭秘。虽然我不能保证其他人也使用相同的方法,不同岗位注重的点可能也不一样,但注意这些点可以帮助你克服简历筛选阶段。

 

这些方法可能看起来不公平,或者可能会忽略合格的应聘者。一些可能很优秀但未在简历中显示出能力的应聘者可能会被拒绝,但考虑到时间,这是最好的权衡方式。记住,非常受欢迎的职位可能会吸引上百份甚至更多的简历。我们如果想要更高效,简历筛选必须快。

 

以下是快速筛选数据科学简历的7种方法:

 

1. 数据科学家的经验

 

快速浏览一下简历,看看他以前的职位有没有“数据科学家”,或者其他类似的职位,比如“机器学习工程师”、“研究科学家”或“算法工程师”。我没有把“数据分析师”包括在内,因为其日常工作通常与数据科学家不同,数据分析师这个头衔是一个非常宽泛的术语。

 

如果你目前的工作是从事数据科学工作,却在简历上写了其他创造性的工作经历,那么最好将其改成数据科学家。请记住,即使简历中包含了你参与过的项目的描述(包括机器学习),如果标题不是数据科学家,就会增加不必要的模糊性。

 

此外,如果你曾参加过数据科学训练营或该领域的全职硕士课程,可能会被认为是你进入数据科学经验的开端(除非你之前做过类似的工作,这将保证在以后的阶段有疑问)。

 

2. 面向业务的成就

 

理想情况下,我想看到你做了什么(技术方面)和你的业务成果。有一些数据科学家缺乏技术却倾向于使用商务用语。

 

如果你能分享对你的工作产生影响的业务kpi,在我这将会得到一个大大的赞。例如,表明你的模型在AUC方面的改进是不错的,但是解决因模型改良而带来的转化率的提高意味着你“掌握了它”——业务影响才是最终真正重要的。

比较以下描述相同工作但侧重点不同的备选方案(技术vs业务):

 

· 银行贷款违约率模型——将改进模型的精度——召回AUC曲线从0.94提升到0.96。

· 银行贷款违约率模型——在保持违约率不变的同时,增加业务部门的年收入3%(每年50万美元)。

 

3.教育

 

你接受过什么正规的专业教育?这是一个很有名的机构吗?对于刚毕业的学生,我也会查看他们的GPA,以及他们是否获得过任何优秀奖项或荣誉。

 

数据科学是一个开放的领域,没有任何标准化的测试,也没有任何必要的知识,人们可以通过各种渠道进入这个领域。基于你的教育背景和时间,我会找出你可能选择的一条。

 

因此,时间线能让招聘者更了解你——你是如何以及何时过渡到数据科学的。如果你没有接受任何数据科学的正规教育,那也没关系,但你需要证明在该领域的工作经验或相关领域的高级学位。

 

4. 布局/视觉吸引力

 

图源:unsplash

 

我看到过一些漂亮的简历,但我也收到过一些没有格式的文本文件(.txt)。写简历是一件痛苦的事情,条件允许的话,你确实需要找一个好的模板,在有限的空间内写上所有内容。

 

巧妙运用空间——把页面分割开来,突出那些不按时间顺序排列的工作或教育经历的部分是很有用的,包括熟悉的技术栈、项目列表、github或博客等链接;一些简单的图标也可以强调部分标题。

 

许多应聘者在他们熟悉的语言/工具旁边使用1-5星或柱状图。就我个人而言,我不太喜欢这种排版,原因如下:

 

· 这是非常主观的——你的“五星”和别人的“两星”是一样的吗?

· 他们把语言和工具混在一起,最糟糕的情况下还会混在软技能上(你的“4.5星”领导力毫无帮助)。作为一个成长型思维的坚定拥护者,声称最大限度地发挥一项技能(尤其是一项难以量化和难以掌握的软技能)让人感觉非常冒昧。

 

我还看到这种方法被进一步滥用,他们采用了主观的度量并将其变成了饼状图(30%的python、10%的团队合作等等)。虽然这可能是一种与众不同的创造性方法,但它证明了你缺乏对不同图表概念背后的基本理解。下面是我发现的两份在视觉上很吸引人的简历,为了匿名,我给细节打上了马赛克。

 

 

 

在这两份简历中,垂直分隔用于区分经验、技能、成就和出版物,简短的总结段落有助于描述背景和愿望。

 

5. 机器学习的多样性

 

我找到了两种多样性,如下:

 

· 算法类型:结构化/经典ML与深度学习。有些候选人只研究过深度学习,包括结构化数据,这些数据本可以更好地用于基于树的模型。虽然成为DL方面的专家本身没有问题,但是限制工具集会限制你的解决方案。

 

正如马斯洛所说:“如果你拥有的唯一工具是一把锤子,你往往会把每个问题都视为钉子。”在Riskified,我们处理结构化的、领域驱动的、特征工程的数据,这些数据最好能处理各种形式的促进树。整个简历都指向DL将是一个问题。

 

· ML领域:这通常涉及两个需要很多专业知识的领域——计算机视觉和NLP。这些领域的专家很抢手,而且在很多情况下,他们的整个职业生涯都将专注于这些领域。如果想找一个在这个领域工作的人,这一点至关重要;但是如果想找一个从事更普泛的数据科学工作的人,这通常是不合适的。

 

所以,如果你的大部分经验是在NLP领域,而你申请的是该领域以外的职位,试着强调你在结构化数据方面工作过的职位/项目以证明你的多样性。

 

6. 技术堆栈

 

这通常可以分解为语言、特定的包(scikit learn、panda、dplyr等)、云及其服务(AWS、Azure、GCP)或其他工具,一些应聘者将其与他们熟悉的算法或架构(RNN、XGBoost、K-NN)混淆。就我个人而言,我更倾向于以技术和工具为中心;当提到一个特定的算法时,我想知道应聘者的ML理论知识是否仅限于这些特定的算法。

 

在这部分,我正在寻找技术堆栈的相关性-它们是否了解最近几年(这是应聘者亲身实践并学习新技能的积极信号)堆栈的广度(它们是否仅限于特定领域工具,或者他们熟悉很多东西)以及与我们的堆栈匹配多少(我们需要教多少)。

 

7. 项目

 

图源:unsplash

 

你在GitHub上做过可以分享的项目吗?任何Kaggle竞争或子项目都是非常有用的,并且能够查看简洁的代码、预处理类型、特征工程、EDA、算法选择以及在现实项目中需要解决的无数其他问题。在你的GitHub和Kaggle账户上添加一个链接,这样面试官就可以进入你的代码了。

 

在我参加的一些面试中,面试者对自己项目的印象并不深,我们也无法就他们所做的选择及其背后的原因展开对话。一定要回顾你做过的工作,否则不要把它写进简历。同样,确保要展示你做的最好的工作,并且投入了足够的时间和精力。最好有2-3个高质量的项目,而不是8-10个中等质量的项目。

 

也许你无法做到上述所有要点也没关系,不过能做到的越多效果会越好。希望这些技巧能帮助你从人群中脱颖而出,顺利通过简历筛选。祝你好运!

 

一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

(添加小编微信:dxsxbb,加入读者圈,一起讨论最新鲜的人工智能科技哦~)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页