全文共3689字,预计学习时长10分钟
图源:sciencenews
量子纠缠是一种经常被误解的现象。不了解它的人可能会认为这又是老生常谈了,明明用普通概率论就能轻易解释。而对于了解的人来说,它是一种令人毛骨悚然的神奇现象,以颇为神秘的方式解释现实的本质。
事实上,量子纠缠兼具以上两种特点。如果抛开现实世界的运作原理不谈,那么量子纠缠可以用普通概率理论来解释。虽然它可能会出现超距幽灵作用(spooky action at a distance),但只有当无法从多维角度思考它时,它才会成立。
首先,来讲讲什么是量子纠缠?简单地说,纠缠就是有两个及以上量子系统,比如光子,它们只有单个量子态。从专业角度而言就是,系统组合的冯·诺依曼熵要小于单个系统的熵。冯·诺伊曼熵是普通熵的量子模拟,描述了量子态处于“纯态”或“混态”的程度。
混态指的是普通概率,比如猜硬币正反的游戏。混态即是正面和反面的混合体,虽然看不见,但可以知道不是正面就是反面。因为硬币只有两种可能的状态,所以熵不为零(与log2成正比)。
纯态指的是状态的量子叠加,其中一个粒子同时处于两种或两种以上的状态。因此,若有一个量子态硬币在处于正面和反面的叠加态中,那就不能说它是正面或反面,在被观察到之前,它处于既是正面又是反面的状态。因为正面和反面是单个量子态而不是两个状态的混态,所以其熵为零。
要明确的一点是:它处于一种确定的状态,而不是两种可能的状态之一,尽管结果最终是随机的。
图源:Pixabay
一个纠缠态集意味着耦合系统作为一个整体是“纯态”而非“混态”(纯态的混合物也有,但此处不作讨论)。
这一点很重要,因为其有可能证明这样一个观点:当有两个纠缠的粒子时,比如从π介子衰变中得到的两个自旋相反的光子,测量其中一个,另一个必然是相关的,这取决于测量的哪个自旋方向的分量。
光子有两个自旋分量,例如x和y。如果测量垂直自旋分量,它们根本不相关。如果测量平行自旋分量,则是完全相反的。如果以其他角度进行测量,它们就会根据选择测量的角度的余弦值相关。
纠缠本质上就如同测量一个物体,而该物体会把测量到的信息传递给另一个物体,因为在另一个物体上测量的信息似乎取决于如何测量第一个物体。
假设创建两个光子,一个发送给笔者在四光年外的半人马座阿尔法星(A)的同事,另一个发送给反方向四光年之外的波尔星飞船(B)上的科学家。如果玻尔星的研究人员和半人马座阿尔法星的研究人员同时进行测量,他们会发现测量结果相互关联。然而,即使信息以光速传播&#x