Rstudio-处理缺失值的方法

本文介绍了在R语言中处理缺失值的两种方法:剔除和填充。剔除方法包括剔除含有缺失值的全部案例和剔除缺失值较多的案例。填充方法则涉及使用集中趋势值(平均值、中位数)以及根据变量相关性和案例相似性来填充缺失值。同时,文章还提供了检测数据是否服从正态分布的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 剔除含有缺失值的案例(行)

algae[!complete.case(algae),]  %找出algae数据集中具有缺失值的全部案例

剔除分两种:一种是剔除具有缺失值的全部案例;另一种是剔除缺失值较多的案例。

(1) 删除algae数据集中具有缺失值的全部案例algae <- na.omit(algae)    

(2) 剔除algae数据集中缺失值较多的案例

Step1manyNAs<- manyNAs(algae,0.2) 

           %给出algae数据集缺失值较多案例所在的行数,其中0.2表示一个案例中缺失的属性占总属性的20%,为默认值,用户可根据自己的需求进行设置。

Step2algae1 <- algae[-manyNAs,] 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值