导数简介
关于导数的定义,网上已经有很多了,本文主要说明一些常见函数的导数以及一些推导过程。之前看过一篇知乎,对如何理解导数讲的挺全面的,有兴趣的朋友可以看看这篇文章—>如何理解导数的概念。
关于导数最简单也最通俗易懂的一个定义就是:曲线的切线的斜率。什么意思呢?
(1)首先理解切线,曲线上两点的连线确定一条割线,当这两个点足够靠近时,割线就变成了切线。
(2)当B点慢慢靠近A点时,割线的斜率一直在发生变化。当B点足够靠近A点时(“极限的思想”),斜率也越来越接近一个值,这个值就叫作导数。
(3)我们一直在说导数是该点切线的斜率,可实际上,我们并不能画不出切线,然后去求取该切线的斜率直接得到导数。为什么呢?因为过一个点我们可以画出很多条线,哪条才是真正的切线呢,我们不得而知。或者说我们确定不了与要求取的点足够靠近的点在哪里,所以我们无法直接做出切线来。
(4)所以说,切线是算出来的,不是画出来的。
导数的基本公式
数学定义:
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
f′(x)=h→0limhf(x+h)−f(x)
以下为常见的一些函数的导数,其中
c
和
a
c和a
c和a表示常数,
(
c
)
′
=
0
(c)^{\prime}=0
(c)′=0
(
c
x
)
′
=
c
(c x)^{\prime}=c
(cx)′=c
(
x
a
)
′
=
a
x
a
−
1
\left(x^{a}\right)^{\prime}=a x^{a-1}
(xa)′=axa−1
(
c
v
)
′
=
−
c
v
′
v
2
\left(\frac{c}{v}\right)^{\prime}=-\frac{c v^{\prime}}{v^{2}}
(vc)′=−v2cv′
(
log
a
x
)
′
=
1
x
ln
a
\left(\log _{a} x\right)^{\prime}= \frac{1}{x \ln a}
(logax)′=xlna1
(
a
x
)
′
=
a
x
ln
a
\left(a^{x}\right)^{\prime}=a^{x} \ln a
(ax)′=axlna
导数的四则运算
函数
u
(
x
)
,
v
(
x
)
u(x),v(x)
u(x),v(x)在点
x
x
x处可导,则:
[
u
(
x
)
±
v
(
x
)
]
′
=
u
(
x
)
′
±
v
(
x
)
′
[u(x) \pm v(x)]^{\prime}=u(x)^{\prime} \pm v(x)^{\prime}
[u(x)±v(x)]′=u(x)′±v(x)′
[
c
u
(
x
)
]
′
=
c
u
′
(
x
)
,
c
为
常
数
[c u(x)]^{\prime}=c u^{\prime}(x),c为常数
[cu(x)]′=cu′(x),c为常数
[
u
(
x
)
⋅
v
(
x
)
]
′
=
u
′
(
x
)
⋅
v
(
x
)
+
u
(
x
)
⋅
v
′
(
x
)
\left.\left[u(x\right) \cdot v(x)\right]^{\prime}=u^{\prime}(x) \cdot v(x)+u(x) \cdot v^{\prime}(x)
[u(x)⋅v(x)]′=u′(x)⋅v(x)+u(x)⋅v′(x)
[
u
(
x
)
v
(
x
)
]
′
=
u
′
(
x
)
⋅
v
(
x
)
−
u
(
x
)
⋅
v
′
(
x
)
[
v
(
x
)
]
2
\left[\frac{u(x)}{v(x)}\right]^{\prime}=\frac{u^{\prime}(x) \cdot v(x)-u(x) \cdot v^{\prime}(x)}{[v(x)]^{2}}
[v(x)u(x)]′=[v(x)]2u′(x)⋅v(x)−u(x)⋅v′(x)
当时老师讲的时候好像是这么说的(方便记忆):
针对第三个公式乘法:前导后不导加上后导前不导
针对第四个除法公式:上导下不导减去下导上不导,除以下不导的平方。
针对梯度下降算法推导
θ
j
:
=
θ
j
−
α
∂
∂
θ
j
J
(
θ
0
,
θ
1
)
,
f
o
r
(
j
=
1
a
n
d
j
=
0
)
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J_{\left(\theta_{0}, \theta_{1}\right)},for(j=1 and j=0)
θj:=θj−α∂θj∂J(θ0,θ1),for(j=1andj=0)其中
∂
∂
θ
j
J
(
θ
0
,
θ
1
)
\frac{\partial}{\partial \theta_{j}} J_{\left(\theta_{0}, \theta_{1}\right)}
∂θj∂J(θ0,θ1)其实就是计算的梯度,
:
=
:=
:=表示赋值,
α
\alpha
α表示学习率(步长)。注意
θ
0
\theta_{0}
θ0和
θ
1
\theta_{1}
θ1应该同时更新。
(1)公式代换:公式中使用的点乘(
⋅
\cdot
⋅)表示乘法,用法可能不严谨。
θ
j
:
=
θ
j
−
α
∂
∂
θ
j
J
(
θ
0
,
θ
1
)
:
=
θ
j
−
α
∂
∂
θ
j
⋅
1
2
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
2
:
=
θ
j
−
α
∂
∂
θ
j
⋅
1
2
m
∑
i
=
1
m
(
θ
0
+
θ
1
x
(
i
)
−
y
(
i
)
)
2
\begin{aligned} \theta_{j} &:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J_{\left(\theta_{0}, \theta_{1}\right)} \\ &:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} \cdot \frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}(x^{(i)})-y(i)\right)^{2} \\ &:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} \cdot \frac{1}{2 m} \sum_{i=1}^{m}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)^{2} \end{aligned}
θj:=θj−α∂θj∂J(θ0,θ1):=θj−α∂θj∂⋅2m1i=1∑m(hθ(x(i))−y(i))2:=θj−α∂θj∂⋅2m1i=1∑m(θ0+θ1x(i)−y(i))2
因此,当
j
=
0
j=0
j=0时,即可得到
θ
0
\theta_{0}
θ0,当
j
=
1
j=1
j=1时,即可得到
θ
1
\theta_{1}
θ1。
(1)当
j
=
0
j=0
j=0时,
θ
j
\theta_{j}
θj =
θ
0
\theta_{0}
θ0,此时需要注意公式中的求导
∂
∂
θ
j
\frac{\partial}{\partial \theta_{j}}
∂θj∂即变为
∂
∂
θ
0
\frac{\partial}{\partial \theta_{0}}
∂θ0∂,也就是说求取的是关于
θ
0
\theta_{0}
θ0的导数,其余参数相当于常数项。
好了,现在将里边的平方项展开(使用上边讲述的公式,切记自变量是
θ
0
\theta_{0}
θ0,其余参数均为常数项):
θ
0
:
=
θ
0
−
α
∂
∂
θ
0
1
2
m
∑
i
=
1
m
[
θ
0
2
+
2
(
θ
1
x
(
i
)
−
y
(
i
)
)
θ
0
+
(
θ
1
x
(
i
)
−
y
(
i
)
)
2
]
:
=
θ
0
−
α
1
2
m
∑
i
=
1
m
[
2
θ
0
+
2
(
θ
1
x
(
i
)
−
y
(
i
)
)
]
:
=
θ
0
−
α
1
m
∑
i
=
1
m
(
θ
0
+
θ
1
x
(
i
)
−
y
(
i
)
)
:
=
θ
0
−
α
1
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
\theta_{0}:=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}} \frac{1}{2 m} \sum_{i=1}^{m}\left[\theta_{0}^{2}+2\left(\theta_{1} x^{(i)}-y^{(i)}\right) \theta_{0}+\left(\theta_{1} x^{(i)}-y^{(i)}\right)^{2}\right] \\ :=\theta_{0}-\alpha \frac{1}{2 m} \sum_{i=1}^{m}\left[2\theta_{0}+2\left(\theta_{1} x^{(i)}-y^{(i)}\right) \right]\\ :=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)\\ :=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}(x^{(i)})-y^{(i)}\right)
θ0:=θ0−α∂θ0∂2m1i=1∑m[θ02+2(θ1x(i)−y(i))θ0+(θ1x(i)−y(i))2]:=θ0−α2m1i=1∑m[2θ0+2(θ1x(i)−y(i))]:=θ0−αm1i=1∑m(θ0+θ1x(i)−y(i)):=θ0−αm1i=1∑m(hθ(x(i))−y(i))
(2)当
j
=
1
j=1
j=1时,
θ
j
\theta_{j}
θj =
θ
1
\theta_{1}
θ1,此时需要注意公式中的求导
∂
∂
θ
j
\frac{\partial}{\partial \theta_{j}}
∂θj∂即变为
∂
∂
θ
1
\frac{\partial}{\partial \theta_{1}}
∂θ1∂,也就是说求取的是关于
θ
1
\theta_{1}
θ1的导数,其余参数相当于常数项。
同上,将平方项先展开(此时的自变量变为
θ
1
\theta_{1}
θ1,其余参数均为常数项):
θ
1
:
=
θ
1
−
α
∂
∂
θ
1
1
2
m
⋅
∑
i
=
1
m
[
(
θ
0
−
y
(
i
)
)
2
+
2
θ
1
x
(
i
)
⋅
(
θ
0
−
y
(
i
)
)
+
θ
1
2
⋅
(
x
(
i
)
)
2
]
:
=
θ
1
−
α
1
2
m
⋅
∑
i
=
1
m
[
0
+
2
x
(
i
)
⋅
(
θ
0
−
y
(
i
)
)
+
2
θ
1
⋅
(
x
(
i
)
)
2
]
:
=
θ
1
−
α
1
2
m
⋅
∑
i
=
1
m
[
2
x
(
i
)
⋅
[
θ
0
−
y
(
i
)
+
θ
1
x
(
i
)
]
]
:
=
θ
1
−
α
1
m
⋅
∑
i
=
1
m
(
θ
0
−
y
(
i
)
+
θ
1
x
(
i
)
)
⋅
x
(
i
)
:
=
θ
1
−
α
1
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
⋅
x
(
i
)
\theta_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} \frac{1}{2 m} \cdot \sum_{i=1}^{m}\left[\left(\theta_{0}-y^{(i)}\right)^{2}+2 \theta_{1} x^{(i)} \cdot\left(\theta_{0}-y^{(i)}\right)+\theta_{1}^{2} \cdot\left(x^{(i)}\right)^{2}\right]\\ :=\theta_{1} - \alpha \frac{1}{2 m} \cdot \sum_{i=1}^{m}\left[0+2 x^{(i)} \cdot\left(\theta_{0}-y^{(i)}\right)+2\theta_{1} \cdot\left(x^{(i)}\right)^{2}\right]\\ :=\theta_{1} - \alpha \frac{1}{2 m} \cdot \sum_{i=1}^{m}\left[2 x^{(i)} \cdot[\theta_{0}-y^{(i)}+\theta_{1} x^{(i)}]\right]\\ :=\theta_{1} - \alpha \frac{1}{m} \cdot \sum_{i=1}^{m}\left(\theta_{0}-y^{(i)}+\theta_{1} x^{(i)}\right)\cdot x^{(i)}\\ :=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}(x^{(i)})-y^{(i)}\right) \cdot x^{(i)}
θ1:=θ1−α∂θ1∂2m1⋅i=1∑m[(θ0−y(i))2+2θ1x(i)⋅(θ0−y(i))+θ12⋅(x(i))2]:=θ1−α2m1⋅i=1∑m[0+2x(i)⋅(θ0−y(i))+2θ1⋅(x(i))2]:=θ1−α2m1⋅i=1∑m[2x(i)⋅[θ0−y(i)+θ1x(i)]]:=θ1−αm1⋅i=1∑m(θ0−y(i)+θ1x(i))⋅x(i):=θ1−αm1i=1∑m(hθ(x(i))−y(i))⋅x(i)
以最终可以推出以下结果:
θ
0
:
=
θ
0
−
α
1
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
θ
1
:
=
θ
1
−
α
1
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
⋅
x
(
i
)
\begin{aligned} \theta_{0} &:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}(x^{(i)})-y^{(i)}\right) \\ \theta_{1} &:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}(x^{(i)})-y^{(i)}\right) \cdot x^{(i)} \end{aligned}
θ0θ1:=θ0−αm1i=1∑m(hθ(x(i))−y(i)):=θ1−αm1i=1∑m(hθ(x(i))−y(i))⋅x(i)等价于:
θ
0
:
=
θ
0
−
α
1
m
∑
i
=
1
m
(
θ
0
+
θ
1
x
(
i
)
−
y
(
i
)
)
θ
1
:
=
θ
1
−
α
1
m
∑
i
=
1
m
(
θ
0
+
θ
1
x
(
i
)
−
y
(
i
)
)
⋅
x
(
i
)
\begin{aligned} \theta_{0} &:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right) \\ \theta_{1} &:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right) \cdot x^{(i)} \end{aligned}
θ0θ1:=θ0−αm1i=1∑m(θ0+θ1x(i)−y(i)):=θ1−αm1i=1∑m(θ0+θ1x(i)−y(i))⋅x(i)