二阶微分方程解法总结 Summary of Second Order Equations

Second Order Equations

Definitions

Second-Order Differential Equation

y ′ ′ = f ( t , y , y ′ ) y'' = f(t,y,y') y=f(t,y,y)

Solution

y ′ ′ ( t ) = f ( t , y ( t ) , y ′ ( t ) ) y''(t) = f(t,y(t),y'(t)) y(t)=f(t,y(t),y(t))

Linear Equations

y ′ ′ + p ( t ) y ′ + q ( t ) y = g ( t ) y'' + p(t)y' + q(t)y = g(t) y+p(t)y+q(t)y=g(t)

Where coefficients p, q, and g can be arbitrary functions of independent variable t, but y, y’, and y’’ must all be first order.

g(t) is called forcing term.

If g(t) = 0, the equation is said to be homogeneous:
y ′ ′ + p ( t ) y ′ + q ( t ) y = 0 y''+p(t)y'+q(t)y=0 y+p(t)y+q(t)y=0

Existence and Uniqueness

Suppose the functions p(t), q(t), and g(t) are continuous on the interval ( α , β ) (\alpha, \beta) (α,β). Let t 0 t_0 t0 be any point in ( α , β ) (\alpha, \beta) (α,β). Then for any real numbers y 0 y_0 y0 and y 1 y_1 y1 there is one and only one function y ( t ) y(t) y(t) defined on ( α , β ) (\alpha, \beta) (α,β), which is a solution to
y ′ ′ + p ( t ) y ′ + q ( t ) y = g ( t ) f o r   α < t < β y''+p(t)y'+q(t)y=g(t) \quad for \ \alpha \lt t \lt \beta y+p(t)y+q(t)y=g(t)for α<t<β
and y ( t ) y(t) y(t) satisfies the initial conditions
y ( t 0 ) = y 0 y ′ ( t 0 ) = y 1 y(t_0)=y_0 \\ y'(t_0)=y_1 y(t0)=y0y(t0)=y1

Structure of General Solutions

Suppose that y 1 y_1 y1 and y 2 y_2 y2 are both solutions to the homogeneous, linear equation
y ′ ′ + p ( t ) y ′ + q ( t ) y = 0. y''+p(t)y'+q(t)y=0. y+p(t)y+q(t)y=0.
Then the function
y = C 1 y 1 + C 2 y 2 y=C_1y_1+C_2y_2 y=C1y1+C2y2
is also a solution.

Linear Combination

A linear combination of the two functions u u u and v v v is any function of the form
w = A u + B v , w=Au+Bv, w=Au+Bv,
where A A A and B B B are constants.

Linear Independent

Two functions u and v are said to be linearly independent on the interval ( α , β ) (\alpha, \beta) (α,β) if neither is a constant multiple of the other on that interval. If one is a constant multiple of the other on ( α , β ) (\alpha, \beta) (α,β) they are said to be linearly dependent there.

General Solution

Suppose that y 1 y_1 y1 and y 2 y_2 y2 are linearly independent solutions to the homogeneous, linear equation
y ′ ′ + p ( t ) y ′ + q ( t ) y = 0. y''+p(t)y'+q(t)y=0. y+p(t)y+q(t)y=0.
Then the general solution is
y = C 1 y 1 + C 2 y 2 , y=C_1y_1+C_2y_2, y=C1y1+C2y2,
where C 1 C_1 C1 and C 2 C_2 C2 are arbitrary constants.

y 1 y_1 y1 and y 2 y_2 y2 form a fundamental set of solutions.

Wronskian

The Wronskian of two functions u u u and v v v is defined to be
KaTeX parse error: Undefined control sequence: \matrix at position 16: W(t)=det\left(\̲m̲a̲t̲r̲i̲x̲{u(t) & v(t)\\ …
Suppose the functions u u u and v v v are sulutions to the linear, homogeneous equation
y ′ ′ + p ( t ) y ′ + q ( t ) y = 0 y''+p(t)y'+q(t)y=0 y+p(t)y+q(t)y=0
in the interval ( α , β ) (\alpha, \beta) (α,β). Then the Wronskian of u u u and v v v is either identically equal to zero on ( α , β ) (\alpha, \beta) (α,β) or it is never equal to zero there.

Use Wronskian to Check Linear Dependency

Suppose the functions u u u and v v v are solutions to the linear, homogeneous equation
y ′ ′ + p ( t ) y ′ + q ( t ) y = 0 y''+p(t)y'+q(t)y=0 y+p(t)y+q(t)y=0
in the interval ( α , β ) (\alpha, \beta) (α,β). Then u u u and v v v are linearly dependent if and only if their Wronskian is identically zero in ( α , β ) (\alpha, \beta) (α,β).

If W ( t 0 ) ≠ 0 W(t_0)\neq 0 W(t0)=0 for some t 0 t_0 t0 in the interval ( α , β ) (\alpha, \beta) (α,β), then u and v are linearly independent in ( α , β ) (\alpha, \beta) (α,β). On the other hand, if u and v are linearly independent in ( α , β ) (\alpha, \beta) (α,β), then W ( t ) W(t) W(t) never vanishes in ( α , β ) (\alpha, \beta) (α,β)

Second-Order Equations and Systems

这一节就是想说明一阶方程和更高阶方程之间的关系

A planner system of first-order equation is a set of two first-order differential equations involving two unknown functions. It might be written as
x ′ = f ( t , x , y ) y ′ = g ( t , x , y ) , x'=f(t,x,y)\\ y'=g(t,x,y), x=f(t,x,y)y=g(t,x,y),
where f f f and g g g are functions of the independent variable t t t and the two unknowns x x x and y y y.

二阶方程 y ′ ′ = F ( t , y , y ′ ) y''=F(t,y,y') y=F(t,y,y)可以写成以下一阶系统:

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值