Numpy常见方法(5)-sort方法、unique方法和in1d方法

本文详细介绍了NumPy中的sort方法,包括全元素排序和按行排序,并通过示例代码进行演示。此外,还讲解了unique方法用于获取数组中唯一值的排序数组,以及in1d方法用于检查测试数组中的元素是否存在于目标数组中。这些方法在数据分析中具有广泛应用。
摘要由CSDN通过智能技术生成

说明:本blog基于python3版本, numpy 1.22.0


前言

本文主要介绍numpy的三种方法:sort,unique和in1d方法

一、sort方法

numpy.sort(目标数组)方法是对数组进行全元素/按轴进行排序
【注:numpy.sort(目标数组)方法返回的是原数组的copy, 而不是“视图”】
【注:目标数组.sort()方法返回的是原数组的“视图”,而不是copy】

1.1 首先,我想对数组a的进行“全元素”排序,

先使用numpy.sort(目标数组)方法
代码如下

import numpy as np
a = np.array([[1,-2,-3],[4,-5,6]])
b = np.sort(a)
print(a)
print(b)

结果如下,

[[ 1 -2 -3]
 [ 4 -5  6]]
[[-3 -2  1]
 [-5  4  6]]

再使用 目标数组.sort()方法
代码如下

import numpy as np
a = np.array([[1,-2,-3],[4,-5,6]])
a.sort()
print(a)

结果如下,

[[-3 -2  1]
 [-5  4  6]]

大家看到区别了吗?可以自我实现一下~

1.2 然后利用sort方法,对a的做“行”排序

使用np.sort(目标数组)方法

代码如下

import numpy as np
a = np.array([[1,-2,-3],[4,-5,6]])
b = np.sort(a, axis = 1)
print(a)
print(b)

结果如下,

[[ 1 -2 -3]
 [ 4 -5  6]]
[[-3 -2  1]
 [-5  4  6]]

不错,是我们想要的

二、unique方法

numpy.unique(目标数组)方法返回一个由目标数组中唯一值排序后形成的一维数组
代码如下,

import numpy as np
a = np.array([[1,-2,-3],[4,-5,6]])
b = np.unique(a)
print(a)
print(b)

结果如下,

[[ 1 -2 -3]
 [ 4 -5  6]]
[-5 -3 -2  1  4  6]

三、in1d方法

numpy.in1d(测试数组,目标数组)方法返回一个布尔值数组;即判断测试数组中的元素是否再目标数组中的数组

代码如下,

import numpy as np
a = np.array([[1,-2,-3],[4,-5,6]])
b = np.array([1,3,9,10])
c = np.in1d(a,b)
print(c)

结果如下,

[ True False False False False False]

这个方法是数据分析中查询某个变量值的常见方法。


总结

写在最后,如果本blog对你帮助,欢迎点赞讨论~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Efred.D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值