python 采样——np.linspace

本文介绍了Python中实现等间隔采样的方法,重点讲解了numpy模块中的linspace函数。该函数能够生成等间距的数值序列,适用于多种应用场景,如信号处理、数据可视化等。文章详细解释了各参数的作用及使用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python中类似matlab有等间隔采样的函数

numpy模块中的linspace

官方文档说明:

numpy. linspace ( startstopnum=50endpoint=Trueretstep=Falsedtype=None )//调用方式

Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [startstop].

The endpoint of the interval can optionally be excluded.

Parameters:

start : scalar                                                             //采样起始数值

The starting value of the sequence.

stop : scalar                                                             //终止数值

The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False.

num : int, optional                                                     //采样个数

Number of samples to generate. Default is 50. Must be non-negative.

endpoint : bool, optional                                          //endpoint为bool值,True则终止点为在stop中设置的数值

If True, stop is the last sample. Otherwise, it is not included. Default is True.

retstep : bool, optional                                            //位bool值,restep为true则返回实际采样间隔

If True, return (samplesstep), where step is the spacing between samples.

dtype : dtype, optional                                             //数值类型,缺省状态下默认为输入数值类型

The type of the output array. If dtype is not given, infer the data type from the other input arguments.

New in version 1.9.0.

Returns:

samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).

step : float, optional

Only returned if retstep is True

Size of spacing between samples.

Examples

>>> np.linspace(2.0, 3.0, num=5)
array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([ 2. ,  2.2,  2.4,  2.6,  2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值