MATLAB中的DCT实现

本文介绍了DCT的基本原理及其在MATLAB中的实现。DCT作为一种与傅里叶变换相关的实数变换,常用于信号和图像处理的有损数据压缩。在MATLAB中通过编写代码,展示了DCT如何对图像进行滤波和能量压缩,适用于像素值压缩。
摘要由CSDN通过智能技术生成

下面来介绍一下DCT的基本原理和其在MATLAB中的实现方法,具体如下:

离散余弦变换(DCT )是与傅里叶变换相关的一种变换,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform),但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。离散余弦变换的第二种类型,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。这是由于离散余弦变换具有很强的"能量集中"特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève 变换--它具有最优的去相关性)的性能。

1、打开MATLAB,在其主界面的编辑器中写入下列代码:

clear                             %清除工作区间
RGB=imread('G:\MATLAB\bm.bmp');   %加载图片
GRAY=rgb2gray(RGB);               %彩色转灰度图
figure,imshow(GRAY);               %显示灰度图
D=dct2(GRAY);                     %进行dct变换
figure,imshow(log(abs(D)),[ ]);   %显示变换过程
colormap(gray(4));colorbar;
D(abs(D)<0.1)=0;
I=idct2(D)/255;                   %设
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术小咖龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值