卷积神经网络综述

卷积神经网络 专栏收录该内容
3 篇文章 0 订阅

下面来简单介绍和归纳总结一下国内外卷积神经网络的结构,分析一下卷积神经网络的基本原理,阐述一下卷积神经网络在图像识别中的相关应用及取得的最新研究成果。

卷积神经网络是人工神经网络与深度学习相结合,通过反向传播算法训练卷积神经网络中的权重,从而实现深度学习的方法。卷积神经网络不仅具有传统神经网络的较好容错性、自适应性和较强自学习能力等优点,还具有自动提取特征、权值共享以及输入图像与网络结构结合良好等优势。卷积神经网络使用标准的反向传播算法进行训练,参数估计的数量比较少,相比于其他网络结构更容易训练。此外,卷积神经网络是采用局部感知区域、共享权值和空间域上的降采样,相对于位移、缩放和扭曲,具有稳定不变的特性。权值共享网络结构能够降低网络模型的复杂度,从而降低权值的个数。权值共享网络使得图像可以直接作为网络的输入,自动识别图像特征,提高图像识别的精度和效率。

卷积神经网络在图像识别中的应用,已受到业界青睐,相关专家已总结出性能较好的网络结构。Lecuny等提出了Lenet-5模型,采用交替连接的卷积层和下采样层对输入图像进行前向传导,并且认为,通过全连接层输出概率分布的结构是当前可以普遍采用的卷积神经网络结构模型,Lenet-5模型虽然在手写字符识别领域取得了成功,但也存在需要大型训练集、过拟合以及硬件要求高等缺点。对于网络结构Lenet-5存在的弊端,KrizhevskyA等提出了网络结构AlexNet,它具有5层卷积网络,约65万个神经元以 及6000万个可训练参数,Simonyan K等 在AlexNet的基础上,针对卷积神经网络的深度进行研究,提出了VGG网络,证明网络深度的提升有助于改善图像分类的精度,而且将VGG的最佳网络深度设定在16-19层,卷积神经网络在图像识别中具有巨大的应用空间,主要应用在交通标志识别、车牌字符识别、人脸识别等领域。赵志宏等将卷积神经网络应用在车牌字符识别中,识别速度明显高于其他方法,达到了很好的应用效果。李飞鹏等将卷积神经网络应用于手写体数字 识别,达到了较高的识别精度,黄琳等将卷积神经网络应用在交通标志识别中,提高了识别的效率。

卷积神经网络包括输入层、隐藏层和输出层。隐藏层是卷积神经网络的重要组成部分。卷积神经网络向前传播可得出输出值,
反向传播则可调节偏置和权值。经典的CNN包括卷积层、降采样层和全连接层,除输入层外每层都有训练参数,采用滑动卷积窗口的方法对输入图像进行卷积,卷积核是卷积层的重要组成部分。特征提取器是卷积核的本质,其主要作用是自动提取输入信号的深层信息。降采样层用来实现对特征图的采样处理,在减少数据量的同时保留有用的信息,使CNN具有抗畸变的能力。全连接层一般位于网络尾端,对前面逐层变换和映射提取的特征进行回归分类等处理。全连接层也可作为输出层使用。

卷积层的下一层是子采样层。子采样层主要是采集图像的信息,根据图像特征局部联系性原理提取主要信息,达到减少数据处理量的效果。其作用是降低图像的分辨率,减少训练维数,增强网络对图像大小变化的适应性。子采样层可再次提取图像重要信息并获得局部均值。经过图像的二次特征提取,子采样层提高了抗畸变能力。

整个卷积神经网络结构包括一个输入层、两个卷积层、两个子采样层和一个输出层。图像信息经过卷积核滤波器Sigmoid函数,赋予偏置后产生3组特征映射图。对每组特征映射图的4个像素取平均值,得到S2子采样层特征映射图。对这些特征映射图再次滤波和采样,可得到C3层和S4层。将S4层的像素并连成一个列向量后与输出层全连接。

卷积神经网络属于局部连接网络,是基于深刻研究自然图像而提出来的。自然图像存在局部区域稳定的属性,其某一局部区域的统计特征相对于图像其他相邻局部区域具有相似性。因此,神经网络从自然图像中学习到的某一局部区域特征同样适合于图像的其他相邻局部区域。随着科学技术的迅速发展,图像的应用越来越广泛,图像处理已经成为研究人员关注的焦点。图像识别是图像处理的前提,相关学者把卷积神经网络应用于图像识别领域,以期提高图像识别的精度和效率。

由于图像识别问题的多样性和复杂性,目前的图像识别主要针对特定的识别问题,而手写体数字识别并不能在物体识别中获得应用,还具有很大的局限性。卷积神经网络在图像识别应用中具有巨大的发展空间,它能够改善网络结构和深度,通过大量的训练和有效算法得出一个通用的识别系统,可提高图像识别的效率和精度。由Lecuny提出的Lenet图像识别通用网络 结构,在很多图像识别中识别效果良好。

随着卷积神经网络深度和网络结构的改善,卷积神经网络在图像识别中的识别精度和速度得以提高,图像识别的领域逐渐扩大,
功能也日益强大,越来越多的识别问题都能通过卷积神经网络来解决。但是,由于卷积神经网络结构的复杂性而需要漫长的训练,运用成本较高;并且,因网络结构缺乏通用性,解决问题时具有很大的局限性。为了使卷积神经网络在图像识别领域应用更加广泛,需要研究通用的图像识别系统,卷积神经网络也需要改变网络的结构和深度。因为网络结构中过滤器的大小直接影响训练过程和识别精度,所以过滤器尺寸合适才能满足图像识别应用的要求,在图像识别中,卷积神经网络的深度是根据具体问题选择的,并由人工预选后通过试验选定较合适的深度值,这显然限制了网络结构的通用性。因此,应根据不同的图像识别问题,选择近似通用的网络结构深度。

 

 

 

 

  • 6
    点赞
  • 0
    评论
  • 64
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

作为一个十余年来快速发展的崭新领域,深度学习受到了越来越多研究者的关注,它在特征提取和建模上都有着相较于浅层模型显然的优势.深度学习善于从原始输入数据中挖掘越来越抽象的特征表示,而这些表示具有良好的泛化能力.它克服了过去人工智能中被认为难以解决的一些问题.且随着训练数据集数量的显著增长以及芯片处理能力的剧增,它在目标检测和计算机视觉、自然语言处理、语音识别和语义分析等领域成效卓然,因此也促进了人工智能的发展.深度学习是包含多级非线性变换的层级机器学习方法,深层神经网络是目前的主要形式,其神经元间的连接模式受启发于动物视觉皮层组织,而卷积神经网络则是其中一种经典而广泛应用的结构.卷积神经网络的局部连接、权值共享及池化操作等特性使之可以有效地降低网络的复杂度,减少训练参数的数目,使模型对平移、扭曲、缩放具有一定程度的不变性,并具有强鲁棒性和容错能力,且也易于训练和优化.基于这些优越的特性,它在各种信号和信息处理任务中的性能优于标准的全连接神经网络.该文首先概述了卷积神经网络的发展历史,然后分别描述了神经元模型、多层感知器的结构.接着,详细分析了卷积神经网络的结构,包括卷积层、池化层、全连接层,它们发挥着不同的作用.然后,讨论了网中网模型、空间变换网络等改进的卷积神经网络.同时,还分别介绍了卷积神经网络的监督学习、无监督学习训练方法以及一些常用的开源工具.此外,该文以图像分类、人脸识别、音频检索、心电图分类及目标检测等为例,对卷积神经网络的应用作了归纳.卷积神经网络与递归神经 网络的集成是一个途径.为了给读者以尽可能多的借鉴,该文还设计并试验了不同参数及不同深度的卷积神经网络来分析各参数间的相互关系及不同参数设置对结果的影响.最后,给出了卷积神经网络及其应用中待解决的若干问题
©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值