下面来简单介绍和归纳总结一下国内外卷积神经网络的结构,分析一下卷积神经网络的基本原理,阐述一下卷积神经网络在图像识别中的相关应用及取得的最新研究成果。
卷积神经网络是人工神经网络与深度学习相结合,通过反向传播算法训练卷积神经网络中的权重,从而实现深度学习的方法。卷积神经网络不仅具有传统神经网络的较好容错性、自适应性和较强自学习能力等优点,还具有自动提取特征、权值共享以及输入图像与网络结构结合良好等优势。卷积神经网络使用标准的反向传播算法进行训练,参数估计的数量比较少,相比于其他网络结构更容易训练。此外,卷积神经网络是采用局部感知区域、共享权值和空间域上的降采样,相对于位移、缩放和扭曲,具有稳定不变的特性。权值共享网络结构能够降低网络模型的复杂度,从而降低权值的个数。权值共享网络使得图像可以直接作为网络的输入,自动识别图像特征,提高图像识别的精度和效率。
卷积神经网络在图像识别中的应用,已受到业界青睐,相关专家已总结出性能较好的网络结构。Lecuny等提出了Lenet-5模型,采用交替连接的卷积层和下采样层对输入图像进行前向传导,并且认为,通过全连接层输出概率分布的结构是当前可以普遍采用的卷积神经网络结构模型,Lenet-5模型虽然在手写字符识别领域取得了成功,但也存在需要大型训练集、过拟合以及硬件要求高等缺点。对于网络结构Lenet-5存在的弊端,KrizhevskyA等提出了网络结构AlexNet,它具有5层卷积网络,约65万个神经元以 及6000万个可