http://www.spoj.com/problems/LCS/
题意:求两个字符串A,B的最长公共子串。字符串长度不超过250000。
思路:这应该算是后缀自动机的经典应用了吧,我们先构造A的SAM,然后用A的SAM一次读入B的每一个字符,初始时状态在root处,此时最大匹配数为tmp=0,(这里的最大匹配数是指以当前读入的字符结尾,往前能匹配的最大长度),设当前到达的状态为p,最大匹配数为tmp,读入的字符为x,若p->go[x]!=NULL,则说明可从当前状态读入一个字符x到达下一个状态,则tmp++,p=p->go[x],否则,找到p的第一个祖先s,s->go[x]!=NULL,若s不存在,则说明以x结尾的字符串无法和A串的任何位置匹配,则设tmp=0,p=root。否则,设tmp=s->tmp+1(因为我们不算x的话已经到达了状态p,这说明对于p的任意祖先已经匹配完毕),p=s->go[x]。我们求tmp所达到的最大值即为所求。代码如下:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#define maxn 500010
using namespace std;
char str[maxn>>1];
struct node
{
node *par,*go[26];
int val;
}*root,*tail,que[maxn],*top[maxn];
int tot,len,c[maxn];
void add(int c,int l)
{
node *np=&que[tot++],*p=tail;
np->val=l;
while(p&&p->go[c]==NULL)
{
p->go[c]=np;
p=p->par;
}
if(p==NULL)
np->par=root;
else
{
node *q=p->go[c];
if(q->val==p->val+1)
np->par=q;
else
{
node *nq=&que[tot++];
*nq=*q;
nq->val=p->val+1;
np->par=q->par=nq;
while(p&&p->go[c]==q)
{
p->go[c]=nq;
p=p->par;
}
}
}
tail=np;
}
void init(int n)
{
for(int i=0;i<=n;i++)
{
memset(que[i].go,0,sizeof(que[i].go));
que[i].val=0;
}
tot=0;
len=1;
root=tail=&que[tot++];
}
void solve()
{
int i;
scanf("%s",str);
int l=strlen(str),ans=0,tmp=0;
node *p=root;
for(i=0;i<l;i++)
{
int x=str[i]-'a';
if(p->go[x])
{
p=p->go[x];
tmp++;
}
else
{
while(p&&p->go[x]==NULL)
p=p->par;
if(p)
{
tmp=p->val+1;
p=p->go[x];
}
else
{
p=root;
tmp=0;
}
}
if(tmp>ans)
ans=tmp;
}
printf("%d\n",ans);
}
int main()
{
//freopen("dd.txt","r",stdin);
scanf("%s",str);
int l=strlen(str);
init(l*2);
for(int i=0;i<l;i++)
add(str[i]-'a',len++);
solve();
return 0;
}