研究背景
随着信息革命的不断推进,互联网以惊人的速度渗透到科技、文化、经济等领域。网络技术的高速发展一方面推动了社会经济的迅速发展,另一方面也给人类社会带来了前所未有的挑战。不断发生的网络中的攻击行为,不仅造成了经济方面的巨大损失,甚至对国家的安全和社会的稳定发展造成了威胁。因此,抵御网络上的恶意攻击、维护网络安全成为亟需解决的问题。 在本次研究中,我们实现了一个可以对网络攻击类型进行有效分类的算法。通过对受到的网络攻击进行分类,防御者够在有限的资源中,更好地对网络攻击进行针对性防御。
算法详解
聚类分析:将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程,分类的后的类别称为簇。每个簇内有很大的相似性,而不同簇之间有很大的相异性。
无监督学习,在学习的过程不依赖于预先定义的类或带类标记的训练实例。
轮廓系数:用于评价聚类效果好坏的一种指标,可被理解为描述聚类后各个类别的轮廓清晰度的指标。