数字图像处理第七次作业

本文介绍了Radon变换在图像分割和CT断层成像重建中的作用,解释了如何利用Radon逆变换获取组织器官信息。同时,展示了使用Matlab进行二级小波分解的过程,通过代码解释了如何对图像进行分解,得到不同尺度的低频和高频图像子带,并给出了相应的图像展示。
摘要由CSDN通过智能技术生成

1、描述Radon变换的应用场景

  • 图像分割,针对各个角度进行投影统计;

  • CT 断层成像的重建。CT 原理其实就是借助 x 射线照射组织器官,不同组织器官对 x 的射线衰减程度(或系数;对应于上面的 f ( x , y ) f(x,y)f(x,y) )不同,一条 x 射线穿过一系列组织器官后,经衰减后,到达采集设备,得到一个衰减后的强度值(对应于上面的 R RR)。我们采集得到一系列的 R RR 情况,就可以通过radon 逆变换得到衰减信息,即组织器官信息。

2、画出二级小波分解的子带图

  • 首先进入这个网址去选一个.bmp格式的图片将其保存到电脑桌面(复制自己的文件地址"C:\Users\dzg\Desktop\lena.bmp")

    lena.bmp - 国内版 Bing images

  • 例如我选的:

    打开matlab新建.m文件将下述代码粘贴到.m文件中运行即可(图片地址记得切换,在代码第三行!!!)!
  • clc;
    clear all;
    o=imread('C:\Users\dzg\Desktop\lena.bmp');
    % figure,imshow(o);
    % o=[ 1 2;3 4;5 6];
    o=double(o);
    %进行第一层提升小波变换
    % els ={'p',[-0.125 0.125],0};
    % lshaarInt = liftwave('haar','int2int');
    % lsnewInt = addlift(lshaarInt,els);
    % [oa1,oh1,ov1,od1]=lwt2(o,lsnewInt);
    % subplot(2,2,1);imshow(oa1,[])%;colormap(gray); 
    % subplot(2,2,2);imshow(oh1,[]);colormap(gray); 
    % subplot(2,2,3);imshow(ov1,[]);colormap(gray); 
    % subplot(2,2,4);imshow(od1,[]);colormap(gray); 
    map=gray;
    [c,s] = wavedec2(o,3,'db1');
    subplot(3,3,1);
    % image(o);
    imshow(o,[]);
    colormap(map);
    title('原始图像');
    ca2=appcoef2(c,s,'db1',2);
    subplot(3,3,2);
    % image(ca2);
    imshow(ca2,[]);
    colormap(map);
    title('尺度为2时低频图像');
    ca1=appcoef2(c,s,'db1',1);
    subplot(3,3,3);
    % image(ca1);
    imshow(ca1,[]);
    colormap(map);
    title('尺度为1时低频图像');
    [chd2,cvd2,cdd2]=detcoef2('all',c,s,2);
    subplot(3,3,4);
    % image(chd2);
    imshow(chd2,[]);
    % a='尺度为2时';'高频图像的水平部分';
    title(sprintf('%s /n %s','尺度为2时','高频图像的水平部分'));
    subplot(3,3,5);
    % image(cvd2);
    imshow(cvd2,[]);
    % title('尺度为2时的高频图像的垂直部分');
    title(sprintf('%s /n %s','尺度为2时','高频图像的垂直部分'));
    subplot(3,3,6);
    % image(cdd2);
    imshow(cdd2,[]);
    % title('尺度为2时的高频图像的对角图像');
    title(sprintf('%s /n %s','尺度为2时','高频图像的对角部分'));
    [chd1,cvd1,cdd1]=detcoef2('all',c,s,1);
    subplot(3,3,7);
    % image(chd1);
    imshow(chd1,[]);
    % title('尺度为1时高频图像的水平部分');
    title(strvcat('尺度为1时','高频图像的水平部分'));
    subplot(3,3,8);
    % image(cvd1);
    imshow(cvd1,[]);
    % title('尺度为1时高频图像的垂直部分');
    title(strvcat('尺度为1时','高频图像的垂直部分'));
    subplot(3,3,9);
    % image(cdd1);
    imshow(cdd1,[]);
    % title('尺度为1时高频图像的对角部分');
    title(strvcat('尺度为1时','高频图像的对角部分'));

  • 得到如下:

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人间垃圾一枚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值