alpaca-lora微调

alpaca-lora项目地址:https://github.com/tloen/alpaca-lora

微调

1、将项目下载到本地

git clone https://github.com/tloen/alpaca-lora.git

模型地址:
https://huggingface.co/decapoda-research/llama-7b-hf

2、配置环境

安装所需的包

pip install -r requirements.txt

预训练模型:decapoda-research/llama-7b-hf 会自动下载。共计33个405M的bin文件,大约占用约14G内存。
在这里插入图片描述
微调数据:https://huggingface.co/datasets/yahma/alpaca-cleaned
该数据基于斯坦福alpca数据进行了清洗。
在这里插入图片描述
由于微调时间较长,这里直接后台运行。

nohup python -u finetune.py \
    --base_model '/data/sim_chatgpt/llama-7b-hf' \
    --data_path '/data/datasets/alpaca-cleaned' \
    --output_dir './lora-alpaca' \
    >> log.out 2>&1 &

需要注意的是,运行代码后会报错:在这里插入图片描述

解决方法:在finetune.py中增加一行代码:

with torch.autocast("cuda"):
    trainer.train(resume_from_checkpoint=resume_from_checkpoint)

微调过程预计需要60个小时,占用显存约9个G。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

推理

设置generate.py文件,将share=True,便于公网访问。

python generate.py \
    --load_8bit \
    --base_model '/data/sim_chatgpt/llama-7b-hf' \
    --lora_weights './lora-alpaca/checkpoint-1000'

如果报错,不能创建链接,降低下gradio版本即可,如:pip install gradio==3.13

效果如下,显存占用约8个G(生成速度较慢,大概需要1分钟左右)
在这里插入图片描述

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值