算法时间复杂度排行

本文深入探讨了算法时间复杂度的概念及其表示方法,包括Θ-notation和Big-Onotation的区别,通过插入排序为例解释Θ(lgn)的由来,并对比不同复杂度函数的数量级。了解这些内容对于评估算法效率至关重要。
摘要由CSDN通过智能技术生成

几种常见的时间复杂度函数按数量级从小到大的顺序依次是:

Θ(lgn),Θ(sqrt(n)),Θ(n),Θ(nlgn),Θ(n 2 ),Θ(n 3 ),Θ(2 n ),Θ(n!)。

其中,lgn通常表示以10为底n的对数,但是对于Θ-notation来说,Θ(lgn)和Θ(log 2 n)并无区别(想一想这是为什么),在算法分析中lgn通常表示以2为底n的对数。可是什么算法的时间复杂度里会出现lgn呢?回顾插入排序的时间复杂度分析,无非是循环体的执行时间乘以循环次数,只有加和乘运算,怎么会出来lg呢?除了Θ-notation之外,表示算法的时间复杂度常用的还有一种Big-O notation。我们知道插入排序在最坏情况和平均情况下时间复杂度是Θ(n 2 ),在最好情况下是Θ(n),数量级比Θ(n 2 )要小,那么总结起来在各种情况下插入排序的时间复杂度是O(n 2 )。Θ的含义和“等于”类似,而大O的含义和“小于等于”类似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

e421083458

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值