32、计算机系统性能测量与工具全解析

计算机系统性能测量与工具全解析

1. Java字节码插桩

Java字节码插桩可通过在应用的Java类指定点插入特殊短字节码序列实现。这有助于对插桩类进行运行时分析,用于性能分析和监控。代码插桩分为静态和动态两种:
- 静态插桩可在编译期间或之后进行。
- 动态插桩只能在运行时进行,典型方式是通过预处理机制,性能分析和监控工具使用类预处理器在JVM加载Java类之前,在所需位置插入插桩代码。

此外,Java Management Extensions (JMX) 是一种基于Java的技术,用于构建分布式插桩,以管理和监控设备及应用。还有一些项目也可实现Java字节码插桩,如:
- JikesBT at IBM:www.alphaworks.ibm.com/tech/jikesbt
- BCEL - Open Source project:jakarta.apache.org/bcel
- JBoss:www.jboss.org

2. 通用性能工具

通用性能分析工具存在于所有主流计算机操作系统中:
|操作系统|性能工具|
| ---- | ---- |
|Unix|部分变种有SAR (System Activity Reporter),多数变种有vmstat,Linux还有procinfo命令|
|Microsoft Windows 2000和XP|有基于图形的系统监视器|
|IBM z/OS平台|有RMF (Resource measurement facility) 和SMF (System management facility) 等通用性能监控设施| <

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导仿真实践,利用人工神经网络对复杂的非线性关系进行建模逼近,提升机械臂运动控制的精度效率。同时涵盖了路径规划中的RRT算法B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿高精度轨迹跟踪控制;④结合RRTB样条完成平滑路径规划优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析神经网络训练,注重理论推导仿真实验的结合,以充分理解机械臂控制系统的设计流程优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值