智源和港中文联合提出首个多功能3D医学多模态大模型(文本、定位和分割任务)

智源和香港中文大学联合提出的 M3D 系列工作,包括 M3D-Data, M3D-LaMed, 和 M3D-Bench, 从数据集、模型和测评全方面推动 3D 医学图像分析的发展。

(1)M3D-Data 是目前最大的 3D 医学图像数据集,包括 M3D-Cap (120K 3D 图文对), M3D-VQA (510K 问答对),M3D-Seg(150K 3D Mask),M3D-RefSeg (3K 推理分割)共四个子数据集。

(2)M3D-LaMed 是目前最多功能的 3D 医学多模态大模型,能够解决文本(疾病诊断、图像检索、视觉问答、报告生成等),定位(目标检测、视觉定位等)和分割(语义分割、指代分割、推理分割等)三类医学分析任务。

(3)M3D-Bench 能够全面和自动评估 8 种任务,涵盖文本、定位和分割三个方面,并提供人工校验后的测试数据。

我们最早于 2024年4月 发布了数据集、模型和代码。近期,我们提供了更小和更强的 M3D-LaMed-Phi-3-4B 模型,并增加了线上 demo 供大家体验!最新进展请关注 GitHub 仓库的更新 ,如果有任何疑问和建议可以及时联系,欢迎大家讨论和支持我们的工作。

论文:

M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Modelsarxiv.org/abs/2404.00578icon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2404.00578

代码:

GitHub - BAAI-DCAI/M3D: M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Modelsgithub.com/BAAI-DCAI/M3Dicon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//github.com/BAAI-DCAI/M3D

模型:

GoodBaiBai88/M3D-LaMed-Phi-3-4B · Hugging Facehuggingface.co/GoodBaiBai88/M3D-LaMed-Phi-3-4Bicon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//huggingface.co/GoodBaiBai88/M3D-LaMed-Phi-3-4B

数据集:

GitHub - BAAI-DCAI/M3D: M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Modelsgithub.com/BAAI-DCAI/M3D?tab=readme-ov-file#dataicon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//github.com/BAAI-DCAI/M3D%3Ftab%3Dreadme-ov-file%23data

线上Demo:

Gradiobaai.rpailab.xyz/icon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//baai.rpailab.xyz/

我们能为医学图像相关研究者提供什么?

  1. M3D-Data, 最大的 3D 医学多模态数据集;

  2. M3D-Seg, 整合了几乎所有开源 3D 医学分割数据集,共计 25 个;

  3. M3D-LaMed, 支持文本、定位和分割的最多功能的 3D 医学多模态大模型,提供了简洁清晰的代码框架,研究者可以轻易魔改每个模块的设置;

  4. M3D-CLIP,基于M3D-Cap 3D 图文对,我们训练了一个图文对比学习的 M3D-CLIP 模型,共提供其中的视觉预训练权重 3DViT;

  5. M3D-Bench,全面和清晰的测评方案和代码。

  6. 本文涉及的所有资源全部开放,希望能帮助研究者共同推进 3D 医学图像分析的发展。

摘要

医学图像分析对临床诊断和治疗至关重要,多模态大语言模型 (MLLM) 对此的支持日益增多。然而,先前的研究主要集中在 2D 医学图像上,尽管 3D 图像具有更丰富的空间信息,但对其的研究和探索还不够。本文旨在利用 MLLM 推进 3D 医学图像分析。为此,我们提出了一个大规模 3D 多模态医学数据集 M3D-Data,其中包含 120K 个图像-文本对和 662K 个指令-响应对,专门针对各种 3D 医学任务量身定制,例如图文检索、报告生成、视觉问答、定位和分割。此外,我们提出了 M3D-LaMed,这是一种用于 3D 医学图像分析的多功能多模态大语言模型。此外,我们引入了一个新的 3D 多模态医学基准 M3D-Bench,它有助于在八个任务中进行自动评估。通过综合评估,我们的方法被证明是一种稳健的 3D 医学图像分析模型,其表现优于现有解决方案。所有代码、数据和模型均可在以下网址公开获取:GitHub - BAAI-DCAI/M3D: M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Modelsicon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//github.com/BAAI-DCAI/M3D

数据集

数据集统计情况。M3D-Data共包括4个子数据集,分别为M3D-Cap (图文对), M3D-VQA(视觉问答对), M3D-RefSeg(推理分割)和M3D-Seg(整合25个3D分割数据集)。

M3D-VQA 数据集分布。其中问题类型主要包括平面、期相、器官、异常和定位五类常见的3D图像问题。

我们整合了几乎所有开源的3D医学分割数据集,组成了M3D-Seg,共计25个。数据集可以被用来做语义分割、推理分割、指代分割和相应的检测定位任务。

模型

M3D-LaMed 模型结构。(a)3D 图像编码器通过跨模态对比学习损失由图文数据进行预训练,可直接应用于图文检索任务。(b)在 M3D-LaMed 模型中,3D 医学图像被输入到预先训练的 3D 图像编码器和高效的3D 空间池化感知器中,并将视觉token插入LLM,输出的[SEG]作为prompt驱动分割模块。

实验

图文检索

在 3D 图文检索中,模型旨在根据相似性从数据集中匹配图像和文本,通常涉及两个任务:文本到图像检索 (TR) 和图像到文本检索 (IR)。

由于缺乏合适的方法,我们将2D医学的代表模型PMC-CLIP应用于3D图文检索中,我们发现由于缺乏空间信息,几乎无法和3D图文检索模型对比。

报告生成

在报告生成中,该模型根据从 3D 医学图像中提取的信息生成文本报告。

封闭式视觉问答

在封闭式视觉问答中,需要为模型提供封闭的答案候选,例如A,B,C,D,要求模型从候选中选出正确答案。

我们发现在医学领域 M3D-LaMed 超过通用的 GPT-4V。

开放式视觉问答

在开放式视觉问答中,模型生成开放式的答案,不存在任何答案提示和候选。

我们发现在医学领域 M3D-LaMed 超过通用的 GPT-4V。不过需注意目前GPT-4V限制了医疗相关问题的回答。

定位

定位在视觉语言任务中至关重要,尤其是涉及输入和输出框的任务。在输出框的任务,如指代表达理解 (REC) ,旨在根据指代表达在图像中定位目标对象。相比之下,在输入框的任务,如指代表达生成 (REG) ,要求模型根据图像和位置框生成特定区域的描述。

分割

分割任务在 3D 医学图像分析中至关重要,因为它具有识别和定位功能。为了解决各种文本提示,分割分为语义分割和指代表达分割。对于语义分割,该模型根据语义标签生成分割掩码。指代表达分割需要根据自然语言表达描述进行目标分割,需要模型具有一定的理解和推理的能力。

分布外 (OOD) 问题的案例研究

我们在 OOD 对话中测试了 M3D-LaMed 模型,这意味着所有问题都与我们的训练数据不相关。我们发现 M3D-LaMed 具有很强的泛化能力,可以对 OOD 问题产生合理的答案,而不是胡言乱语。在每组对话中,左侧的头像和问题来自用户,右侧的头像和答案来自 M3D-LaMed。

模型具有很强的推理能力和泛化能力

我们最新训练的更小的 M3D-LaMed-Phi-3-4B 模型具有更好的表现,欢迎大家使用!GoodBaiBai88/M3D-LaMed-Phi-3-4B · Hugging Face

报告生成测评结果

封闭式VQA测评结果

在TotalSegmentator上测评的语义分割Dice结果

总结

我们 M3D 系列研究促进了使用 MLLM 进行 3D 医学图像分析。具体来说,我们构建了一个大规模 3D 多模态医学数据集 M3D-Data,其中包含 120K 3D 图像文本对和 662K 指令响应对,专为 3D 医学任务量身定制。此外,我们提出了 M3D-LaMed,这是一个通用模型,可处理图像文本检索、报告生成、视觉问答、定位和分割。此外,我们引入了一个综合基准 M3D-Bench,它是为八个任务精心设计的。我们的方法为 MLLM 理解 3D 医学场景的视觉和语言奠定了坚实的基础。我们的数据、代码和模型将促进未来研究中对 3D 医学 MLLM 的进一步探索和应用。希望我们的工作能够为领域研究者带来帮助,欢迎大家使用和讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值