智源和港中文联合提出首个多功能3D医学多模态大模型(文本、定位和分割任务)

智源和香港中文大学联合提出的 M3D 系列工作,包括 M3D-Data, M3D-LaMed, 和 M3D-Bench, 从数据集、模型和测评全方面推动 3D 医学图像分析的发展。

(1)M3D-Data 是目前最大的 3D 医学图像数据集,包括 M3D-Cap (120K 3D 图文对), M3D-VQA (510K 问答对),M3D-Seg(150K 3D Mask),M3D-RefSeg (3K 推理分割)共四个子数据集。

(2)M3D-LaMed 是目前最多功能的 3D 医学多模态大模型,能够解决文本(疾病诊断、图像检索、视觉问答、报告生成等),定位(目标检测、视觉定位等)和分割(语义分割、指代分割、推理分割等)三类医学分析任务。

(3)M3D-Bench 能够全面和自动评估 8 种任务,涵盖文本、定位和分割三个方面,并提供人工校验后的测试数据。

我们最早于 2024年4月 发布了数据集、模型和代码。近期,我们提供了更小和更强的 M3D-LaMed-Phi-3-4B 模型,并增加了线上 demo 供大家体验!最新进展请关注 GitHub 仓库的更新 ,如果有任何疑问和建议可以及时联系,欢迎大家讨论和支持我们的工作。

论文:

M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Modelsarxiv.org/abs/2404.00578icon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2404.00578

代码:

GitHub - BAAI-DCAI/M3D: M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Modelsgithub.com/BAAI-DCAI/M3Dicon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//github.com/BAAI-DCAI/M3D

模型:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值