NOIP2015提高组 神奇的幻方
题目描述
幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行、每列及两条对角线上的数字之和都相同。
当N为奇数时,我们可以通过以下方法构建一个幻方:
首先将1写在第一行的中间。
之后,按如下方式从小到大依次填写每个数K(K=2,3,…,N*N):
1.若(K−1)在第一行但不在最后一列,则将K填在最后一行,(K−1)所在列的右一列;
2.若(K−1)在最后一列但不在第一行,则将K填在第一列,(K−1)所在行的上一行;
3.若(K−1)在第一行最后一列,则将K填在(K−1)的正下方;
4.若(K−1)既不在第一行,也不在最后一列,如果(K−1)的右上方还未填数,则将K填在(K−1)的右上方,否则将K填在(K−1)的正下方。
现给定N请按上述方法构造N*N的幻方。
输入输出格式
输入格式:
输入文件只有一行,包含一个整数N即幻方的大小。输出格式:
输出文件包含N行,每行N个整数,即按上述方法构造出的N*N的幻方。相邻两个整数之间用单个空格隔开。输入输出样例
输入样例:
3
输出样例:
8 1 63 5 7
4 9 2
说明
对于100%的数据,1<=N<=39且N为奇数
来源:NOIp2015 提高组 d1t1
分析:根据题意判断下一个数存放的位置。需另开一个数组存放某个位置是否已填充。
#include
#include
#include
#include
#include
#include
#include
using namespace std; #define N 40 int n, magic[N][N], filled[N][N] = {0}; struct node{ int row; int col; void set(int r, int c, int v){ row = r; col = c; magic[r][c] = v; filled[r][c] = 1; } }pos[N*N]; int read_i(){ char ch = getchar(); int ans = 0; while(ch>'9' || ch<'0') ch = getchar(); while(ch<='9' && ch>='0'){ ans = ans*10 + ch -'0'; ch = getchar(); } return ans; } int main(){ ios::sync_with_stdio(false); int k = 1, row, col, i, j; n = read_i(); pos[k].set(0, n/2, k); for(k=2; k<=n*n; k++){ row = pos[k-1].row, col = pos[k-1].col; if(row == 0 && col != n-1) pos[k].set(n-1, col+1, k); else if(row != 0 && col == n-1) pos[k].set(row-1, 0, k); else if(row == 0 && col == n-1) pos[k].set(row+1, col, k); else if(row != 0 && col != n-1){ if(filled[row-1][col+1] == 0) pos[k].set(row-1, col+1, k); else pos[k].set(row+1, col, k); } } for(i=0; i