线性代数 笔记

1.1 n阶行列式
1.2 行列式的性质,
1.3行列式按行(列)展开.
1.4 克莱姆法则

2.1消元法
2.2 n维向量
2.3向量组的秩
2.4 矩阵的秩
2.5 线性方程组解的一般理论

3.1 矩阵的运算
3.2几种特殊的矩阵
3.3分块矩阵
3.4 逆矩阵
3.5初等矩阵

4.1 向量空间
4.2 向量内积
4.3 正交矩阵

5.1矩阵的特征值和特征向量
5.2 相似矩阵与矩阵可对角化条件
5.3实对称矩阵的对角化
5.4 矩阵级数
5.5投人产出分析简介

6.1 二次型及其矩阵.
6.2 化二次型为标准形
6.3 化二次型为规范形
6.4正定矩阵


1.1n阶行列式

  • D = ∣ a 11 a 12 a 13 a 21 a 22 a 2 3 ′ a 31 a 32 a 33 ∣ ≠ 0 D=\begin{vmatrix}a_{11}&a_{12}&a_{13}\\\\a_{21}&a_{22}&a_{23^{\prime}}\\\\a_{31}&a_{32}&a_{33}\end{vmatrix}\ne0 D= a11a21a31a12a22a32a13a23a33 =0 时程组(1.4) 有唯一解 加果记 D 1 = ∣ b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 ∣ , D 2 = ∣ a 11 b 1 a 13 a 21 b 2 a 23 ∣ , D 3 = ∣ a 11 a 12 b 1 a 21 a 22 b 2 a 31 b 3 a 33 ∣ D_{1}=\begin{vmatrix}b_{1}&a_{12}&a_{13}\\b_{2}&a_{22}&a_{23}\\b_{3}&a_{32}&a_{33}\end{vmatrix},D_{2}=\begin{vmatrix}a_{11}&b_{1}&a_{13}\\a_{21}&b_{2}&a_{23}\\\end{vmatrix},D_{3}=\begin{vmatrix}a_{11}&a_{12}&b_{1}\\a_{21}&a_{22}&b_{2}\\a_{31}&b_{3}&a_{33}\end{vmatrix} D1= b1b2b3a12a22a32a13a23a33 ,D2= a11a21b1b2a13a23 ,D3= a11a21a31a12a22b3b1b2a33 则方程组(1.4)的解为 x 1 = D 1 D , x 2 = D 2 D , x 3 = D 3 D x_1=\frac{D_1}{D},\quad x_2=\frac{D_2}{D},\quad x_3=\frac{D_3}{D} x1=DD1,x2=DD2,x3=DD3

  • image

  • 定理1.1 任意一个排列经过一次对换后,改变奇偶性

  • image

  • image

  • image

  • image

  • image

  • image

1.2行列式的性质

某行(列)加上或减去另一行(列)的几倍,行列式不变
某行(列)乘k,等于k乘此行列式
互换两行(列),行列式变号
image
image
①两行(列)相同或成比例时,行列式为0
②某行(列)为两项相加减时,行列式可拆成两个行列式相加减

1.3行列式按行(列)展开.

image
image
image
M要转换成A
image

1.4 克莱姆法则

方程组D=!0D=0
齐次只有一组零解有零解与非零解
非齐次只有一组非零解,X=Dj/D有多个解或无解
  • 定义1.8设F是由一些数组成的集合,其中0∈F,1∈F.如果F中任意两个数(这两个数也可以相同)的和、差、积、商(除数不得为零)仍然是F中的数,则F就称为一个数域.
  • image

2.线性方程组

2.1消元法

矩阵相乘:前行后列
1.零矩阵
2.逆矩阵:假设A是一个n阶的方阵,如果存在一个矩阵B,使得A⋅B的结果是单位矩阵I,那么就称B是A的逆矩阵
3.E矩阵: E
A=E AE=E EE=E
4.乘法有顺序,除法无 (AB)K =! AKBK (a+b)2等式不成立,除非其中一个是E
image
任意取定X4,Xs 的值,都可以唯一地确定出对应的x1 ,x2,X3的值,从而得到原方程的一组解.因此原方程组有无穷多组解,这时,变量x4,x5称为自由未知量
image
矩阵的初等变换:
(1)交换矩阵的两行(列)的位置;
(2)某一行(列)乘以非零的数;
(3)某一行(列)的若干倍加到另一行(列) 上.
image
线性方程的一般解
image
增广矩阵
image
伴随矩阵(列举出所有的代数余子式,将这些余子式组合成一个矩阵,这样的矩阵称为伴随矩阵。)
image
阶梯方程组

线性方程组的增广矩阵A通过初等行变换可以化为阶梯形矩阵,对应的阶梯形方程组与原方程组同解.并且
1.当dn+1≠0时,原方程组无解.
2.当dn+1=0,且r = n时,原方程组(2.5)有唯一-解,
3. 当dn+1=0,且r < n时,原方程组(2.5)有无穷多组解。

定理2.1如果齐次线性方程组中,方程个数小于未知量个数,即m< n时,则方程组有非零解。
定理2.2齐次线性方 程组(2.10)有非零解的充分必要条件是它的系数行列式D=0

2.2 n维向量

【N维向量】:数域F上n个数a1,a2,……,an组成的有序数组(a1,a2,……,an)。
【向量的线性运算】向量的加法和数乘运算
用向量集合表示空间:image
用向量集合表示空间中的平面:image
我们可以把若干个向量组合到一起,这样的组合称为向量组,其实就是矩阵。
我们可以把一个m * n的矩阵,看成是n个m维的列向量组合而成的向量组。
之前我们介绍的Ax=0的齐次线性方程组的解,当R(A) < n时,它是无限多个n维列向量的向量组。

【向量β是向量组ɑ1,ɑ2,…,ɑn的线性组合】/【向量β可以由向量组ɑ1,ɑ2,…,ɑn线性表示】
对于向量组ɑ1,ɑ2,…,ɑn和向量β,存在s个数k1,k2,…,kn使得β=k1ɑ1+k2ɑ2+…+knɑn

【n维(基本)单位向量组】
n维向量组ε1=(1,0,…,0),ε2(0,1,…,0),…,εn(0,0,…,1)
任一n维向量ɑ=(ɑ1,ɑ2,…,ɑn)都可以由ε1,ε2,…,εn线性表示
方程的向量形式:X1ɑ1+X2ɑ2+…+Xnɑn=β

【线性相关】如果存在不全为0的数:image使得:image

定理2.4 n个n维向量a1=(a1,a2,…,an),a2=(a1,a2,…,2n)?,αn=(a1,a2,…,an)线性相关的充分必要条件是行列式=0
定理2.5 n+1个n维向量必线性相关.
定理2.6 如果一个向量组中的部分向量线性相关,则整个向量组也线性相关.
定理2.7向量组a1,a2…,an(s>=2)线性相关的充分必要条件是其中至少有一个向量是其余s-1个向量的线性组合.
定理2.8如果向量组a1,a2…,an线性无关,但向量组a1,a2…,an,β线性相关,则向量β可由向量组a1,a2…,an线性表示,并且表达式是唯一的.

推论 向量组a1,a2…,an(s>=2)线性无关的充分必要条件是每一个向量都不能用其余向量线性表示
向量β可以由向量组α1,α2,…,αn。线性表示的充分必要条件是线性方程组有解.
单个非零的向量线性无关
含有零向量的任一向量组线性相关.
如果向量组a1,a2,a3线性无关,则向量组a1+a2,a2+a3,a3+a4也线性无关.
一般情况下,我们说线性无关或者线性相关,都是指n >= 2的情况。我们很容易看出,对于两向量来说线性相关,其实就是指的两向量成比例。如果是三个向量,则是三向量共面

如果一个向量组A线性相关,我们假设a1向量的系数k1不为零,那么: a 1 = − 1 k 1 ( k 2 a 2 + k 3 a 3 + ⋯ + k n a n ) a_{1}=\frac{-1}{k_{1}}(k2_{a}2+k_{3}a_{3}+\cdots+k_{n}a_{n}) a1=k11(k2a2+k3a3++knan)也就是说a1向量能够被A组当中其他向量线性表示。反之,如果A组向量之中有一个向量能够被其他向量线性表示,那么就说明A组向量线性相关。

我们再换一种理解方式,如果将A组向量 A : a 1 , a 2 , ⋯   , a n A:a_1,a_2,\cdots,a_n A:a1,a2,,an看做是矩阵 A = ( a 1 , a 2 , ⋯   , a n ) A=(a_1,a_2,\cdots,a_n) A=(a1,a2,,an)向量组A线性相关,就是齐次线性方程组Ax=0有非零解。我们之前介绍齐次线性方程组的时候曾经介绍过,齐次线性方程组要有非零解的条件是R(A) < n。如果R(A) = n,那么齐次线性方程组没有非零解,也就是说向量组A线性无关。

这一点能够成立,其实也就是方程组: x 1 a 1 + x 2 a 2 + ⋯ + x m a m = b x_{1}a_{1}+x_{2}a_{2}+\cdots+x_{m}a_{m}=b x1a1+x2a2++xmam=b有解。如果我们将它展开,其实就是我们之前介绍的非齐次线性方程组。要使得该方程组有解,必须要满足:R(A) = R(A, b),这样,我们就把向量组和之前的线性方程组联系起来了。

三个定理:

  1. 如果向量组 A:a1,a2,…,an线性相关,那么向量组B:a1,a2,…,an+1也线性相关。反之,如果B线性无关,那么A也一定线性无关。
  2. n个m维向量组成的向量组,当m 小于 n 时,一定线性相关。另外,n+1个n维向量一定线性相关。
  3. 如果向量组 A:a1,a2,…,an线性无关,向量组B:a1,a2,…,am,b线性相关。那么向量b必然可以被向量组A线性表示,并且表示的方式唯一。

2.3向量组的秩

image
image
image
image
image

2.4 矩阵的秩

image
image
A的等价标准形
image

2.5 线性方程组解的一般理论

image
image
image
image
image

N级排列
逆序
逆序数
偶排列,奇排列
对换(一个对换改变奇偶性)

总结

1、行列式
image
image
2、矩阵
image
image
image
3、矩阵的初等变换与线性方程组
image
image
image
image
4、向量组的线性相关性
image
image
image
5、相似矩阵和二次型
image
image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值