向量与矩阵求导与实例分析

本文介绍了矩阵和向量的求导概念,包括布局的区分,如分子布局和分母布局,并通过实例分析求导过程。内容涵盖标量、向量、矩阵之间的求导规则,同时提供了求导公式速查表,适用于机器学习中的线性代数基础。
摘要由CSDN通过智能技术生成

【说明】

1. 相关内容经过诸多学习内容整理

2.  比较权威的学习源可参考维基百科  https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities

3. 机器学习关联内容学习: 1)西瓜书第55页多元线性回归涉及到的公式推导   2)机器学习实战 第138页 

【目录】

一、布局的概念

二、一个求导的例子

三、另一个例子的推导

四、矩阵及向量求导法则

五、求导公司速查表

 

一、布局的概念

重要前提: 若 x 为向量,则默认 x 为列向量, x^{T}为行向量

布局简单地理解就是分子 y、分母 x 是行向量还是列向量。

  • 分子布局(Numerator-layout): 分子为 y 或者分母为  x^{T} (即,分子为列向量或者分母为行向量)
  • 分母布局(Denominator-layout): 分子为
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值