【说明】
1. 相关内容经过诸多学习内容整理
2. 比较权威的学习源可参考维基百科 https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities
3. 机器学习关联内容学习: 1)西瓜书第55页多元线性回归涉及到的公式推导 2)机器学习实战 第138页
【目录】
一、布局的概念
二、一个求导的例子
三、另一个例子的推导
四、矩阵及向量求导法则
五、求导公司速查表
一、布局的概念
重要前提: 若 x 为向量,则默认 x 为列向量, 为行向量
布局简单地理解就是分子 y、分母 x 是行向量还是列向量。
- 分子布局(Numerator-layout): 分子为 y 或者分母为 (即,分子为列向量或者分母为行向量)
- 分母布局(Denominator-layout): 分子为