二元函数对xy同时求导_让向量、矩阵和张量的求导更简洁些吧

本文详细讲解如何对向量、矩阵和高阶张量进行求导,通过简化计算、去除求和符号和应用链式法则,逐步解析复杂的多元数组求导问题。通过实例分析,展示了雅可比矩阵的计算过程,并探讨了多维数据和神经网络中的应用。
摘要由CSDN通过智能技术生成

本文是我在阅读Erik Learned-Miller的《Vector, Matrix, and Tensor Derivatives》时的记录,点此下载。

本文的主要内容是帮助你学习如何进行向量、矩阵以及高阶张量(三维及以上的数组)的求导。并一步步引导你来进行向量、矩阵和张量的求导。

1 简化、简化,还是简化(重要的事情说三遍)

在求解涉及到数组的导数时,大部分的困难是因为试图一次性做太多事情。比如说同时求解多个组成部分的导数,在求和符号存在的情况下求解导数,或者使用链式法则。在有丰富的求导经验之前,同时执行所有的这些操作,我们就很容易出错。

1.1 将矩阵计算分解为单个标量的计算

为了简化给定的计算,我们将矩阵的求导分解为每个单独标量元素的表达式,每个表达式只包含标量变量。在写出单个标量元素与其他标量值的表达式后,就可以使用微积分来计算。这比同时进行矩阵的求和以及求导要容易一些。(看起来有点晕,没关系,看后面的案例就清晰了)。

In order to simplify a given calculation, it is often useful to write out the explicit formula for a single scalar element of the output in terms of nothing but scalar variables. Once one has an explicit formula for a single scalar element of the output in terms of other scalar values, then one can use the calculus that you used as a beginner, which is much easier than trying to do matrix math, summations, and derivatives all at the same time.

例如:假设我们有一个

阶列向量
,它是由
维矩阵
阶列向量
计算得到:

假设我们计算

关于
的导数。要完完全全的求解导数,就需要计算
中的每一个元素对
中的每一个元素的(偏)导数。那么在本例中,因为
中有
个元素,
中有
个元素,所以一个包含
次运算。

比如说,我们要计算

的第3个元素对
的第7个元素的(偏)导数,这就是向量中的一个标量对其他向量中的一个标量求导:

在求导之前,首先要做的就是写下计算

的公式, 根据矩阵-向量乘法的定义,
等于矩阵
中的第3行和向量
的点积。

现在,我们将原始的矩阵方程式(1)简化成了标量方程式。此时再进行求导就简单多了。

1.2 去除求和符号

虽然可以直接在公式(2)中求导&#x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值