给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。
说明:不允许修改给定的链表。
进阶:
你是否可以使用 O(1) 空间解决此题?
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例3:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
分析: 本题依旧是利用快慢指针的思想来解决问题,同样快指针fast每次移动走两步,慢指针slow每次移动走一步,那具体在两个相遇的点在哪里呢?而又如何求出入环的第一个结点呢?
先给出结论:一个指针从相遇点开始走,一个指针从链表头开始走,他们会在环的入口点相遇。
下面我们就给出证明吧:
首先我们假定在带环的链表的前面的结点的长度为:L
设fast和slow在入环后相遇的结点为meet,meet结点距离入环的结点的距离为X,如图所示:
fast每次移动两步,而slow每次移动一步,假定在相遇之前fast在环中已经绕环移动N圈(假设C表示一圈)我们可以得到一下等式(**注意:**fast指针和slow都是顺时针移动的。):
slow的步数为:L+X;
fast的步数为:L+NC+X;
fast每次移动两步,slow每次移动一步,所以两者的移动的步数呈2倍的关系:
即:2(L+X)=L+NC+X
化简得出:
L=N*C-X
L=(N-1)*C+C-X;
注意:C-X的距离是从meet点顺时针旋转到入环点的距离。
根据以上规律L=(N-1)*C+C-X可知,在meet点每次移动一步到入环点的时候,会与从头结点head移动到入环点的指针相遇。
代码实现如下:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode *detectCycle(struct ListNode *head) {
struct ListNode* slow=head;
struct ListNode* fast=head;
while(fast && fast->next){
slow=slow->next;
fast=fast->next->next;
//相遇
if(slow==fast){
//此部分是根据上面证明可以得到的结论
struct ListNode* meet=slow;
struct ListNode* cur=head;
while(meet!=cur){
cur=cur->next;
meet=meet->next;
}
return meet;
}
}
return NULL;
}