博弈:对抗竞争性质、作出决策
应用方向:雷达对抗、资源管理、波形设计、射频隐身、目标探测跟踪识别、电磁环境评估学习
演化博弈(群体博弈):不要求完全理性、完全信息条件,强调动态平衡
演化稳定策略(Evolutionarily Stable Strategy,ESS): 指的是一种策略,如果在群体中占据主导地位,那么即使有其他策略的出现,也不容易被替代。演化稳定策略强调的是在演化的长期过程中,某些策略能够在群体中稳定存在下去。
复制动态(Replicator Dynamics): 描述了不同策略在群体中的传播和演化过程。这一概念来源于生物学中基因的复制和传递,被用来模拟不同策略在群体中的相对频率如何随时间演变。
进化博弈均衡(Evolutionary Game Equilibrium): 描述在演化过程中,群体中的个体所采取的策略达到某种平衡状态。这种平衡状态可能涉及演化稳定策略或其他演化动力学的平衡点。
演化博弈模型中,所构建的复制动态方程的基本形式为:dx(t)/dt = [f(si,x) − f (x,x)] xi
si表示演化群体内博弈的策略集;xi表示在t时刻下,博弈群体中有多少数量比例的个体选择了策略si,f(si,x) 当博弈个体选择si时,个体的期望支付;f (x,x) 为整个群体的平均期望支付。
示例:一个群体,两个策略,主体1有x概率选择p1,1-x概率选择p2。主体2相反。决策不同时,主体1收益为k,主体2收益为f
盈利矩阵为:
收益:V1 = xg + (1-x)k
V2 = xc + (1-x)f
V = xV1 + (1-x)v2
复制动态方程:F(x)=dx(t)/dt = x(V1-V)= x(1−x)[k−f+x(g−f−k+c)]
令复制动态方程结果为零,解为 0 , 1,c−k/f−k,令F′(x)<0的解就是演化博弈的稳定策略均衡解
多智能体系统的演化博弈:博弈双方,雷达和干扰机都智能。1.分布式算法优化 2.演化算法优化
势博弈G:存在一个潜在函数(potential function),通过最小化或最大化这个潜在函数可以达到博弈的均衡状态。势博弈主要强调博弈中的全局性特征,而不是个体之间的直接相互作用。
势函数Φ(potential function):如果每个玩家对于自身目标改变或策略选取,都可以映射到某个全局函数中去,这个函数就叫做势函数。
性质:1至少存在一个纳什均衡。2势函数的极大值是博弈的一个纳什均衡。
势博弈均衡: 如果一个博弈存在一个潜在函数,使得通过最小化或最大化这个潜在函数可以达到博弈的纳什均衡,那么这个博弈就被称为势博弈。在势博弈中,博弈的均衡点可以通过简单地调整策略来实现。
联盟博弈 :合作博弈
联盟博弈的核 :非合作博弈的纳什均衡相似,即联盟中的任何成员都无法通过组成新的联盟来进一步提高联盟的集体收益。
Shapley值 :Shapley值是合作博弈的一种数值解,用来衡量合作博弈中的利益分配方案是否公平