演化稳定策略

定义

传统策略:x,变异策略:y
如果对任何策略 y ≠ x y\neq x y=x,存在某个 ε y ∈ ( 0 , 1 ) \varepsilon_y\in (0,1) εy(0,1),对所有的 ε ∈ ( 0 , ε y ) \varepsilon\in(0,\varepsilon_y) ε(0,εy)使不等式 u [ x , ε y + ( 1 − ε ) x ] > u [ y , ε y + ( 1 − ε ) x ] ( 2.1 ) u[ x,\varepsilon y+(1-\varepsilon)x]> u[ y ,\varepsilon y+(1-\varepsilon)x] (2.1) u[x,εy+(1ε)x]>u[y,εy+(1ε)x](2.1)成立,那么 x ∈ Δ x\in\Delta xΔ是一个稳定演化策略。
即:进入后(y策略)收益低于现有策略x收益,那么 x ∈ Δ x\in\Delta xΔ是一个稳定演化策略。

若所占份额足够小,即: ε → 0 \varepsilon\rightarrow0 ε0,则有如下式子: u [ x , x ] > u [ y , x ] u[x,x]>u[y,x] u[x,x]>u[y,x]

命题2.1
Δ E S S = { x ∈ Δ N E : u [ y , y ] < u [ x , y ] , ∀ y ∈ β ∗ ( x ) , y ≠ x } \Delta^{ESS}=\{x\in\Delta^{NE}:u[y,y]<u[x,y],\forall y\in\beta^*(x),y\neq x\} ΔESS={xΔNE:u[y,y]<u[x,y],yβ(x),y=x}
Δ E S S ⊂ Δ N E \Delta^{ESS}\subset\Delta^{NE} ΔESSΔNE,也就是说演化稳定策略是对称纳什均衡策略集合 Δ N E \Delta^{NE} ΔNE的子集。
等价于如下两个式子
{ u ( y , x ) ⩽ u ( x , x ) , ( 2.2 ) 对称纳什均衡策略 u ( y , x ) = u ( x , x ) → u ( y , y ) < u ( x , y ) , ∀ y ≠ x ( 2.3 ) \begin{align*} \begin{split} \left \{ \begin{array}{ll} u(y,x) \leqslant u(x,x), &(2.2)对称纳什均衡策略\\ u(y,x) = u(x,x) \rightarrow u(y,y)<u(x,y),\forall y\neq x &(2.3) \end{array} \right. \end{split} \end{align*} {u(y,x)u(x,x),u(y,x)=u(x,x)u(y,y)<u(x,y),y=x(2.2)对称纳什均衡策略(2.3)
请添加图片描述
对定义不等式,利用双线性性质,可得
f ( ε , y ) = u ( x − y , x ) + ε u ( x − y , y − x ) > 0 f(\varepsilon,y)=u(x-y,x)+ \varepsilon u(x-y,y-x)>0 f(ε,y)=u(xy,x)+εu(xy,yx)>0
由(2.2)(2.3)的两个条件可知:
截距 u ( x − y , x ) u(x-y,x) u(xy,x)非负;而当截距=0时,斜率 u ( x − y , y − x ) > 0 u(x-y,y-x)>0 u(xy,yx)>0
请添加图片描述
满足2.2,2.3两个条件,故x为演化均衡策略

2X2对称博弈

第一类: Δ E S S = { e 2 } \Delta^{ESS}=\{e^2\} ΔESS={e2}
第二类: Δ E S S = { e 1 , e 2 } \Delta^{ESS}=\{e^1,e^2\} ΔESS={e1,e2}
第三类: Δ E S S = { x } , x = { a 2 / ( a 1 + a 2 ) , a 1 / ( a 1 + a 2 ) } \Delta^{ESS}=\{x\},x=\{a_2/(a_1+a_2),a_1/(a_1+a_2)\} ΔESS={x},x={a2/(a1+a2),a1/(a1+a2)}
第四类: Δ E S S = { e 1 } \Delta^{ESS}=\{e^1\} ΔESS={e1}
严格的对称纳什均衡策略属于演化均衡策略,非严格的对称纳什均衡需要比较u(x,y)、u(y,y)的大小
请添加图片描述

Δ E S S \Delta^{ESS} ΔESS解的结构

命题2.2
如果 x ∈ Δ E S S x\in \Delta^{ESS} xΔESS且对某个策略 y ≠ x , C ( y ) ⊂ C ( x ) y\neq x,C(y)\subset C(x) y=x,C(y)C(x),那么 y ∉ Δ N E y\notin \Delta^{NE} y/ΔNE

推论
集合 Δ E S S ⊂ Δ \Delta^{ESS}\subset\Delta ΔESSΔ是有限的。如果 x ∈ Δ E S S ∩ i n t ( Δ ) x\in\Delta^{ESS}\cap int(\Delta) xΔESSint(Δ),那么 Δ E S S = x \Delta^{ESS}={x} ΔESS=x

意思是,如果该ESS为内点,那么将是唯一的一个ESS

与非合作标准的联系

命题2.3
如果 x ∈ Δ x\in\Delta xΔ是被弱占优的,那么 x ∉ Δ E S S x\notin\Delta^{ESS} x/ΔESS
假设存在策略y弱占优策略x,则有u(y,y)大于等于 u(x,y),不满足二阶条件。
推论
如果 x ∈ Δ E S S x\in\Delta^{ESS} xΔESS,那么 ( x , x ) ∈ Θ P E (x,x)\in\Theta^{PE} (x,x)ΘPE

命题2.4
如果 x ∈ Δ E S S x\in\Delta^{ESS} xΔESS,那么 ( x , x ) ∈ Θ N E (x,x)\in\Theta^{NE} (x,x)ΘNE是一个约当均衡。

  • 17
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值