机器学习之强化学习---《机器学习-周志华》学习笔记


强化学习

        强化学习又称再励学习、评价学习或增强学习。我们在执行一个任务时,不知道这个任务对结果能否造成好的影响,只能得到一个当前反馈,需要不断尝试,才能得出较好的策略。这个过程称为”强化学习”。

1.分析强化学习与监督学习的联系与差别

        监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。
         监督学习是从标记的训练数据来推断一个功能的机器学习任务。
         强化学习中的“策略”实际上就相当于监督学习中的“分类器”(当动作是离散的)或“回归器”(当动作是连续的),模型的形式并无差别。但不同的是,没有人直接告诉机器在什么状态下应该做什么动作,只有等到最终结果揭晓,才能通过“反思”之前的动作是否正确来进行学习。因此,强化学习在某种意义上可看作具有“延迟标记信息”的监督学习问题。

2.ε -贪心法如何实现探索与利用的平衡
2·1 k摇臂赌博机

        k摇臂赌博机有k个摇臂,赌徒投入一个硬币后可选择按下其中一个摇臂,每个摇臂以一定概率吐出硬币,但是赌徒不知道这个概率。
         若仅为获知每个摇臂期望奖赏,则可“仅探索”(即估计摇臂优劣),若按目前最优的摇臂,则为“仅利用”’。“仅探索”会失去很多选择最优摇臂的机会,“仅利用”可能经常选不到最优摇臂。
所以“探索”与“利用”是矛盾的,因为投币次数有限,加强一方则会削弱另一方。因此必须在探索与利用之间达成较好的折中。

2.2 ε -贪心法

         ε -贪心法基于一个概率来对探索和利用进行折中:每次尝试时,以ε的概率进行探索,即以均匀概率随机选取一个摇臂;以1-ε的概率进行利用,即选择当前平均奖赏最高的摇臂(若有多个,则随机选取一个)。
令Q(k)记录摇臂k平均奖赏,若摇臂k被尝试了n次,得到的奖赏为 v 1 v_1 v1, v 2 v_2 v2, v 3 v_3 v3,…, v n v_n vn,则平均奖赏为
Q ( k ) = 1 n ∑ i = 1 n v i ( 2.1 ) Q(k)=\frac{1}{n}\displaystyle\sum_{i=1}^{n} v_i(2.1) Q(k)=n1i=1nvi2.1
        由于(2.1)需要记录n个奖赏值,用增量式更高效。初始时 Q 0 Q_0 Q0(k)=0,若第n-1次尝试后的平均奖赏为 Q n − 1 Q_{n-1} Qn1(k),则经过第n次尝试获得奖赏 v n v_n vn后,平均奖赏更新为
Q n ( k ) = 1 n ( ( n − 1 ) × Q n − 1 ( k ) + v n ) ( 2.2 ) Q_n(k)=\frac{1}{n}((n-1)×Q_{n-1}(k)+v_n) (2.2) Qnk=n1((n1)×Qn1k+vn)(2.2)
= Q n − 1 ( k ) + 1 n ( v n − Q n − 1 ( k ) ) ( 2.3 ) =Q_{n-1}(k)+\frac{1}{n}(v_n-Q_{n-1}(k))(2.3) =Qn1k+n1(vnQn1k)(2.3)
        若摇臂奖赏的不确定性较大,例如概率分布较宽时,则需更多的探索,此时需要较大的ε值;若摇臂的不确定性较小,例如概率分布较集中时,则少量的尝试就能很好地近似真实奖赏,此时需要的较小.通常令ε取一个较小的常数,如0.1或0.01。然而,若尝试次数非常大,那么在一段时间后,摇臂的奖赏都能很好地近似出来,不再需要探索,这种情形下可让ε随着尝试次数的增加而逐渐减小,例如令ε=1/ t \sqrt t t

3.如何用赌博机算法实现强化学习任务

        对于离散状态空间、离散动作空间上的多步强化学习任务,一种直接的办法是将每个状态上动作的选择看作一个K摇臂赌博机问题,用强化学习任务的累积奖赏来代替K摇臂赌博机算法中的奖赏函数,即可将赌博机算法用于每个状态:对每个状态分别记录各动作的尝试次数、当前平均累积奖赏等信息,基于赌博机算法选择要尝试的动作。

图3.1不同算法在2摇臂赌博机上的性能比较
4.试推导折扣累积奖赏的全概率展开式

V γ π ( x ) = ∑ a ∈ A π ( x , a ) ∑ x ′ ∈ X P x → x ′ a ( R x → x ′ a + γ V γ π ( x ′ ) ) ( 4.1 ) V_{\gamma }^{\pi }(x)={\displaystyle\sum_{a\in A}}\pi ( x,a ){\displaystyle\sum_{x{}'\in X}}P_{x\to x {}' }^{a }(R_{x\to x{}' }^{a }+\gamma V_{\gamma }^{\pi }(x{}'))(4.1) Vγπ(x)=aAπ(x,a)xXPxxa(Rxxa+γVγπ(x))(4.1)
公式()中 V γ π ( x ) V_{\gamma }^{\pi }(x) Vγπ(x)表示从状态x出发,使用策略π所带来的折扣累积奖赏。
P x → x ′ a P_{x\to x {}' }^{a } Pxxa表示对于任意状态x, x ′ x{}' x和动作a,在x状态下执行动作a转移到, x ′ x{}' x状态的概率。
R x → x ′ a R_{x\to x{}' }^{a } Rxxa表示该转移所带来的奖赏。
暂定E=<X,A,P,R>均为已知,这样的情形称为“模型已知”。
推导过程如下:
V γ π ( x ) = E π [ ∑ t = 0 ∞ γ t r t + 1 ∣ x 0 = x ] = E π [ r 1 + ∑ t = 1 ∞ γ t r t + 1 ∣ x 0 = x ] = E π [ r 1 + γ ∑ t = 1 ∞ γ t − 1 r t + 1 ∣ x 0 = x ] = ∑ a ∈ A π ( x , a ) ∑ x ′ ∈ X P x → x ′ a ( R x → x ′ a + γ E π [ ∑ t = 0 ∞ γ t r t + 1 ∣ x 0 = x ′ ] ) = ∑ a ∈ A π ( x , a ) ∑ x ′ ∈ X P x → x ′ a ( R x → x ′ a + γ V γ π ( x ′ ) ) \begin{aligned} V_{\gamma }^{\pi }(x) &amp; =E_ \pi[\displaystyle\sum_{t=0}^{\infty }\gamma ^t r_{t+1} |x_0=x]\\ &amp; =E_ \pi[r_1+\displaystyle\sum_{t=1}^{\infty }\gamma ^t r_{t+1} |x_0=x]\\ &amp; =E_ \pi[r_1+\gamma\displaystyle\sum_{t=1}^{\infty }\gamma ^{t-1} r_{t+1} |x_0=x]\\ &amp; ={\displaystyle\sum_{a\in A}}\pi ( x,a ){\displaystyle\sum_{x{}&#x27;\in X}}P_{x\to x{}&#x27; }^{a }(R_{x\to x{}&#x27; }^{a }+\gamma E_ \pi[\displaystyle\sum_{t=0}^{\infty }\gamma ^t r_{t+1} |x_0=x{}&#x27;])\\ &amp; ={\displaystyle\sum_{a\in A}}\pi ( x,a ){\displaystyle\sum_{x{}&#x27;\in X}}P_{x\to x {}&#x27; }^{a }(R_{x\to x{}&#x27; }^{a }+\gamma V_{\gamma }^{\pi }(x{}&#x27;)) \\ \end{aligned} Vγπ(x)=Eπ[t=0γtrt+1x0=x]=Eπ[r1+t=1γtrt+1x0=x]=Eπ[r1+γt=1γt1rt+1x0=x]=aAπ(x,a)xXPxxa(Rxxa+γEπ[t=0γtrt+1x0=x])=aAπ(x,a)xXPxxa(Rxxa+γVγπ(x))

5.什么是动态规划中的最优性原理,与强化学习中的策略更新有什么关系
5.1最优性原理

        最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

5.2策略更新

        对某个策略的累积奖赏进行评估后,若发现它并非最优策略,则需要进行策略更新。理想的策略应能最大化累积奖赏,如公式5.1
π ∗ = a r g π m a x ∑ x ∈ X V π ( x ) ( 5.1 ) \pi^*=arg_\pi ^{max}\displaystyle\sum_{x\in X}V^\pi(x)(5.1) π=argπmaxxXVπ(x)(5.1)

        不妨令动作改变后对应的策略为 π ′ \pi{}&#x27; π Q π ( x , a ) Q^\pi(x,a) Qπ(x,a)表示从状态x出发,执行动作a后再使用动作策略π带来的累积奖赏,改变动作的条件为 Q π ( x , π ′ ( x ) ) ≥ V π ( X ) Q^\pi(x,\pi{}&#x27;(x))\geq V^{\pi }(X) Qπ(x,πx)Vπ(X),则递推不等式如下:

因此,两者都是后面的策略相对于前面的策略是更优化的。
6.完成时序差分学习中式(6.1)的推导

Q t + 1 π ( x , a ) = Q t π ( x , a ) + α ( R x → x ′ a + γ Q t π ( x ′ , a ′ ) − Q t π ( x , a ) ) ( 6.1 ) Q_{t+1}^{π}\left ( x,a \right )=Q_{t}^{π}\left ( x,a \right )+\alpha \left ( R_{x\rightarrow {x}&#x27;}^{a}+ \gamma Q_{t}^{π}\left ( {x}&#x27;,{a}&#x27; \right )-Q_{t}^{π}\left ( x,a \right )\right )(6.1) Qt+1π(x,a)=Qtπ(x,a)+α(Rxxa+γQtπ(x,a)Qtπ(x,a))6.1
根据式 Q t + 1 π ( x , a ) = Q t π ( x , a ) + 1 t + 1 ( r t + 1 − Q t π ( x , a ) ) Q_{t+1}^{π}\left ( x,a \right )=Q_{t}^{π}\left ( x,a \right )+\frac{1}{t+1}\left ( r_{t+1}-Q_{t}^{π}\left ( x,a \right ) \right ) Qt+1π(x,a)=Qtπ(x,a)+t+11(rt+1Qtπ(x,a))
并且 1 t + 1 = α \frac{1}{t+1}=\alpha t+11=α
可得 r t + 1 = R x → x ′ a + γ Q t π ( x ′ , a ′ ) r_{t+1}=R_{x\rightarrow {x}&#x27;}^{a}+\gamma Q_{t}^{π}\left({x}&#x27;,{a}&#x27;\right) rt+1=Rxxa+γQtπ(x,a)
于是可以推出式(6.1)

7.对于目标驱动的强化学习任务,目标是到达某一状态,例如机器人走到预定的位置,假设机器人只能在一维空间运动,即只能向左或者向右运动,机器人起始位置在最左侧,预定的位置在最右侧,试为这样的任务设置奖赏规则,并编程实现。

import numpy as np
import pandas as pd
import time

np.random.seed(2)  # reproducible


N_STATES = 6   # the length of the 1 dimensional world
ACTIONS = ['left', 'right']     # available actions
EPSILON = 0.9   # greedy police
ALPHA = 0.1     # learning rate
GAMMA = 0.9    # discount factor
MAX_EPISODES = 13   # maximum episodes
FRESH_TIME = 0.3    # fresh time for one move


def build_q_table(n_states, actions):
    table = pd.DataFrame(
        np.zeros((n_states, len(actions))),     # q_table initial values
        columns=actions,    # actions's name
    )
    # print(table)    # show table
    return table


def choose_action(state, q_table):
    # This is how to choose an action
    state_actions = q_table.iloc[state, :]
    if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()):  # act non-greedy or state-action have no value
        action_name = np.random.choice(ACTIONS)
    else:   # act greedy
        action_name = state_actions.idxmax()    # replace argmax to idxmax as argmax means a different function in newer version of pandas
    return action_name


def get_env_feedback(S, A):
    # This is how agent will interact with the environment
    if A == 'right':    # move right
        if S == N_STATES - 2:   # terminate
            S_ = 'terminal'
            R = 1
        else:
            S_ = S + 1
            R = 0
    else:   # move left
        R = 0
        if S == 0:
            S_ = S  # reach the wall
        else:
            S_ = S - 1
    return S_, R


def update_env(S, episode, step_counter):
    # This is how environment be updated
    env_list = ['-']*(N_STATES-1) + ['T']   # '---------T' our environment
    if S == 'terminal':
        interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
        print('\r{}'.format(interaction), end='')
        time.sleep(2)
        print('\r                                ', end='')
    else:
        env_list[S] = 'o'
        interaction = ''.join(env_list)
        print('\r{}'.format(interaction), end='')
        time.sleep(FRESH_TIME)


def rl():
    # main part of RL loop
    q_table = build_q_table(N_STATES, ACTIONS)
    for episode in range(MAX_EPISODES):
        step_counter = 0
        S = 0
        is_terminated = False
        update_env(S, episode, step_counter)
        while not is_terminated:

            A = choose_action(S, q_table)
            S_, R = get_env_feedback(S, A)  # take action & get next state and reward
            q_predict = q_table.loc[S, A]
            if S_ != 'terminal':
                q_target = R + GAMMA * q_table.iloc[S_, :].max()   # next state is not terminal
            else:
                q_target = R     # next state is terminal
                is_terminated = True    # terminate this episode

            q_table.loc[S, A] += ALPHA * (q_target - q_predict)  # update
            S = S_  # move to next state

            update_env(S, episode, step_counter+1)
            step_counter += 1
    return q_table


if __name__ == "__main__":
    q_table = rl()
    print('\r\nQ-table:\n')
    print(q_table)
    
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本章主要介绍了概率图模型的基本概念和常见类型,以及如何利用Python实现这些模型。下面是一些笔记和代码示例。 ## 概率图模型的基本概念 概率图模型是一种用于表示和处理不确定性的图形化模型,它能够将一个复杂的联合概率分布表示为多个简单的条件概率分布的乘积形式,从而简化概率推理和模型学习的过程。概率图模型主要包括两种类型:有向图模型和无向图模型。 有向图模型(Directed Acyclic Graph, DAG)又称为贝叶斯网络(Bayesian Network, BN),它用有向边表示变量之间的因果关系,每个节点表示一个随机变量,给定父节点的条件下,每个节点的取值都可以用一个条件概率分布来描述。有向图模型可以用贝叶斯公式进行概率推理和参数学习。 无向图模型(Undirected Graphical Model, UGM)又称为马尔可夫随机场(Markov Random Field, MRF),它用无向边表示变量之间的相互作用关系,每个节点表示一个随机变量,给定邻居节点的取值,每个节点的取值都可以用一个势函数(Potential Function)来描述。无向图模型可以用和有向图模型类似的方法进行概率推理和参数学习。 ## 概率图模型的Python实现 在Python,我们可以使用`pgmpy`库来实现概率图模型。该库提供了一个简单而强大的接口来定义和操作概率图模型,支持有向图模型和无向图模型的构建、概率推理、参数学习等功能。 ### 有向图模型 以下是一个简单的有向图模型的示例: ```python from pgmpy.models import BayesianModel model = BayesianModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其,`BayesianModel`是有向图模型的类,`('A', 'B')`表示A节点指向B节点,即B节点是A节点的子节点,依此类推。我们可以使用以下代码查看模型的结构: ```python print(model.edges()) # 输出:[('A', 'B'), ('B', 'D'), ('C', 'B')] ``` 接下来,我们可以为每个节点定义条件概率分布。以下是一个简单的例子: ```python from pgmpy.factors.discrete import TabularCPD cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.2, 0.8]]) cpd_c = TabularCPD(variable='C', variable_card=2, values=[[0.4, 0.6]]) cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.1, 0.9, 0.3, 0.7], [0.9, 0.1, 0.7, 0.3]], evidence=['A', 'C'], evidence_card=[2, 2]) cpd_d = TabularCPD(variable='D', variable_card=2, values=[[0.9, 0.1], [0.1, 0.9]], evidence=['B'], evidence_card=[2]) model.add_cpds(cpd_a, cpd_c, cpd_b, cpd_d) ``` 其,`TabularCPD`是条件概率分布的类,`variable`表示当前节点的变量名,`variable_card`表示当前节点的取值个数,`values`表示条件概率分布的值。对于有父节点的节点,需要指定`evidence`和`evidence_card`参数,表示当前节点的父节点和父节点的取值个数。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import VariableElimination infer = VariableElimination(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其,`VariableElimination`是概率推理的类,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ### 无向图模型 以下是一个简单的无向图模型的示例: ```python from pgmpy.models import MarkovModel model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其,`MarkovModel`是无向图模型的类,与有向图模型类似,`('A', 'B')`表示A节点和B节点之间有相互作用关系。 接下来,我们可以为每个节点定义势函数。以下是一个简单的例子: ```python from pgmpy.factors.discrete import DiscreteFactor phi_a = DiscreteFactor(['A'], [2], [0.2, 0.8]) phi_c = DiscreteFactor(['C'], [2], [0.4, 0.6]) phi_b = DiscreteFactor(['A', 'C', 'B'], [2, 2, 2], [0.1, 0.9, 0.3, 0.7, 0.9, 0.1, 0.7, 0.3]) phi_d = DiscreteFactor(['B', 'D'], [2, 2], [0.9, 0.1, 0.1, 0.9]) model.add_factors(phi_a, phi_c, phi_b, phi_d) ``` 其,`DiscreteFactor`是势函数的类,与条件概率分布类似,需要指定变量名、变量取值个数和势函数的值。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import BeliefPropagation infer = BeliefPropagation(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其,`BeliefPropagation`是概率推理的类,与有向图模型类似,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ## 总结 本章介绍了概率图模型的基本概念和Python实现,包括有向图模型和无向图模型的构建、条件概率分布和势函数的定义、概率推理等。使用`pgmpy`库可以方便地实现概率图模型,对于概率模型的学习和应用都有很大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值