等差数列公式:an=a1+(n-1)d,(n为正整数)
a1为首项,an为第n项的通项公式,d为公差。
前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)
Sn=n(a1+an)/2,(n为正整数)
公差d=(an-a1)/(n-1),(n为正整数)
若n、m、p、q均为正整数,
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
若A、B、C均为正整数,B为中项,B=(A+C)/2
也可推导得Sn=na1+nd(n-1)/2
1)等比数列:a(n+1)/an=q, n为自然数。
(2)通项公式:an=a1*q^(n-1);
推广式: an=am·q^(n-m);
(3)求和公式:Sn=n*a1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n) (前提:q不等于 1)
(4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(6)在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。