等差数列-等比数列公式和前n项和公式

本文详细介绍了等差数列和等比数列的基本概念、通项公式、求和公式及其性质。针对等差数列,文中给出了通项公式、前n项和公式及公差的计算方式,并说明了其特殊性质。对于等比数列,除了介绍通项公式外,还提供了求和公式及其特殊情况下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 等差数列公式:an=a1+(n-1)d,(n为正整数)

  a1为首项,an为第n项的通项公式,d为公差。

  前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)

  Sn=n(a1+an)/2,(n为正整数)

  公差d=(an-a1)/(n-1),(n为正整数)

  若n、m、p、q均为正整数,

  若m+n=p+q则:存在am+an=ap+aq

  若m+n=2p则:am+an=2ap

  若A、B、C均为正整数,B为中项,B=(A+C)/2

  也可推导得Sn=na1+nd(n-1)/2

1)等比数列:a(n+1)/an=q, n为自然数。  

(2)通项公式:an=a1*q^(n-1);  

推广式: an=am·q^(n-m);  

(3)求和公式:Sn=n*a1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n) (前提:q不等于 1)  

(4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; 

②在等比数列中,依次每 k项之和仍成等比数列.  

(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.  

(6)在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。

在解决等差数列等比数列的求解问题时,递推公式是重要的工具之一。递推公式通过已知来推导未知,是求数列通n的关键。首先,我们需要了解等差数列等比数列的基本性质。 参考资源链接:[数列题型解析:从定义到求方法全攻略](https://wenku.csdn.net/doc/4dgb0qwvk9?spm=1055.2569.3001.10343) 等差数列的定义是每一的差为常数,即d=a_n+1 - a_n。其递推公式可以表示为a_n+1 = a_n + d。对于求解等差数列的通公式an = a1 + (n - 1)d,我们可以通过已知的首a1公差d来使用公式法计算出任意的值。 对于求n等差数列公式Sn = n/2 * (a1 + an)或Sn = n/2 * [2a1 + (n - 1)d],我们只需将首a1公差d代入即可得出结果。 在等比数列中,每与其的比为常数,即r=a_n+1 / a_n。其递推公式可以表示为a_n+1 = a_n * r。等比数列的通公式an = a1 * r^(n - 1)直接体现了这一关系。通过首a1公比r的已知值,我们可以求出数列的任意一。 对于n等比数列公式Sn = a1 * (1 - r^n) / (1 - r),其中r≠1时适用。当r=1时,Sn=n*a1。通过这个公式,我们可以快速计算出等比数列n。 举个实例,对于等差数列2, 5, 8, ..., 我们知道首a1=2,公差d=3。求第10a1010S10。使用递推公式,我们得到a10=2+(10-1)*3=29。利用等差数列n公式,我们得到S10=10/2*(2+29)=155。 在等比数列2, 4, 8, ...中,首a1=2,公比r=2。求第5a55S5。通过递推公式,我们得到a5=2*2^(5-1)=32。使用等比数列n公式,我们得到S5=2*(1-2^5)/(1-2)=-62(注意此处r=2>1,因此公式适用)。 通过这些实例,我们能够更好地理解如何应用递推公式来求解等差数列等比数列的相关问题。对于想要深入理解掌握更多解题技巧的学习者,可以参考《数列题型解析:从定义到求方法全攻略》这份资源。该文档不仅提供了等差数列等比数列的递推公式解析,还包含了许多实用的练习题目,帮助学习者通过实践来巩固所学知识。 参考资源链接:[数列题型解析:从定义到求方法全攻略](https://wenku.csdn.net/doc/4dgb0qwvk9?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值