等差数列前n项和公式证明
-
等差数列
- 第一项为 a1
- 公差为 d
-
则前n项的和为:
Sn=[(a1+an)∗n]/2
- 证明过程如下:
Sn = a1 + (a1 + d) + ... + (a1 + (n-1)d)
Sn = an + (an - d) + ... + (an - (n-1)d)
上边两式相加得到 2Sn = (a1 + an)*n
即 Sn = (a1 + an)*n / 2
若 a1 = 1, an = n,则
Sn=(n2+n)/2