lua小节

本文详细介绍了在Lua编程语言中Vector(向量表)和Map(映射表)这两种数据结构的区别与使用方法。包括初始化、判断空状态、元素个数获取、按key存取、插入删除操作及遍历等核心功能,并特别指出Vector可以排序而Map无法直接排序的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >




一、 明确数据结构的用法
vector: 
key 是从1开始的连续正整数
连续存储 
插入删除(非尾端)较慢
可有序遍历,可排序

map: 
key 类型不限
非连续存储
插入删除(非尾端)较快
不可有序遍历,不可排序



二、初始化
vector:
local tbl = { 2, 4, 8, 10 }
local tbl = {
{ xx = 1, yy = “ok” },
{ xx = 2, yy = “ok” },
{ xx = 3, yy = “ok” },
}
map:
local tbl = { name = “xx”, age = 22 }
local tbl = {
[1] = { xx = 1, yy = “ok” },
[2] = { xx = 2, yy = “ok” },
[4] = { xx = 3, yy = “ok” },
count = 3
}



三、判断是否为空
vector:
if #tbl > 0 then
end

map:
if next(tbl) then
end



四、获取table 中元素个数
vector:
local len = #tbl

map:
local len = 0
for _, _ in pairs(tbl) do
len = len + 1
end
local len = table.nums(tbl)



五、按key存取值
vector:
local v = tbl[key]
tbl[key] = v

map:
local v = tbl[key]
tbl[key] = v



六、插入
vector:
table.insert(tbl, v)  
默认插入到最后一个位置。删除也是默认最后一个位置;
若在第一个位置或其他位置插入,后面的元素要移动,删除同理
table.insert(tbl, pos, v)

map:
tbl[key] = v



七、删除
vector:
table.remove(tbl)
table.remove(tbl, pos)
删除多个元素时需要从后向前遍历
for i = #tbl, 1, -1 do
if testRemove(tbl[i]) do
table.remove(tbl, i)
end
end

map:
tbl[key] = nil



八、遍历
vector:
for i, e in ipairs(tbl) do
end
for i, v in ipairs(tbl) do
end

map:
for k, v in pairs(tbl) do
end





九、排序
vector:
table.sort(tbl, 
function(a, b)
return a > b
end
)

map:
不可排序


内容概要:本文详细介绍了名为MoSca的系统,该系统旨在从单目随意拍摄的视频中重建和合成动态场景的新视角。MoSca通过4D Motion Scaffolds(运动支架)将视频数据转化为紧凑平滑编码的Motion Scaffold表示,并将场景几何和外观与变形场解耦,通过高斯融合进行优化。系统还解决了相机焦距和姿态的问题,无需额外的姿态估计工具。文章不仅提供了系统的理论背景,还给出了基于PyTorch的简化实现代码,涵盖MotionScaffold、GaussianFusion、MoScaSystem等核心组件。此外,文中深入探讨了ARAP变形模型、2D先验到3D的提升、动态高斯表示、相机参数估计等关键技术,并提出了完整的训练流程和性能优化技巧。 适用人群:具备一定计算机视觉和深度学习基础的研究人员和工程师,特别是对动态场景重建和新视角合成感兴趣的从业者。 使用场景及目标:①从单目视频中重建动态场景的新视角;②研究和实现基于4D Motion Scaffolds的动态场景表示方法;③探索如何利用预训练视觉模型的先验知识提升3D重建质量;④开发高效的动态场景渲染和优化算法。 其他说明:本文提供了详细的代码实现,包括简化版和深入扩展的技术细节。阅读者可以通过代码实践加深对MoSca系统的理解,并根据具体应用场景调整和扩展各个模块。此外,文中还强调了物理启发的正则化项和多模态先验融合的重要性,帮助实现更合理的变形和更高质量的渲染效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值