查看torch版本是否为GPU版本
判断cuda是否能用代码
import torch
print(torch.cuda.is_available())
import torch
print(torch.__version__) //我的是CPU版本
如果不是GPU版本下载GPU版本
- 查看cuda版本
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0 //我的是11.8版本
- 下载与cuda版本一致的pytorch
//下载pytorch 11.8版本,去pytorch官网生成11.8对应的pytorch版本
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia //conda虚拟环境下载命令
参考:
https://blog.csdn.net/m0_63769180/article/details/128478175
通过nvidia-smi命令查看显卡驱动版本,因为显卡驱动决定了最高支持的CUDA版本,CUDA的版本需要低于显卡驱动的版本的
然后通过cuda版本来确定torch版本,torch版本要小于已安装的cuda版本
在新建的conda环境中下载对应的pytorch版本
在新建的环境中使用pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118出错下载不了,但是在base环境中可以下载并且下载的还是GPU版本,能顺利运行代码。
最后使用手动下载库的方式来安装。参考 https://blog.csdn.net/Ecoboy_zhang/article/details/130116411
首先确定好要下载的torch版本,主要参考操作系统,cuda版本(cuda是GPU驱动器,虚拟环境中不需要下载)和python版本。比如我cuda版本是11.8,python是3.8。那么我需要的torch whl文件名中要有cu118和cp38的信息。
从下图红框中网址找需要的torch torchvision torchaudio
找到需要的torch文件
两个都可以,我选择了第二个,下载下来,这里开梯子下载快
放到虚拟环境中的Scripts中
我的环境名字叫zerodce_env
激活该环境 进入该文件夹 后pip install <文件名>
可以在pytharm中操作,也可以在dos窗口中执行
另外我需要torchvision,0.19.1版本不行,用不了。要用0.18.1,这里直接pip下载就行