深度学习系列(3)——使用神经网络去辨识手写数字

1、人脑的数字辨识

人脑的视觉系统可以说是世界的奇迹之一,看下面一行数字:
这里写图片描述
你会觉得你毫不费力地看出了它是 50419 ,其实识别的过程并不简单。人类大脑的每个半球中,有一个初级视觉皮层,V1区,约含有1亿4000万个神经元,它们之间的连接数更是达到了数百亿。然而,人的视觉不仅仅只是V1,整个一系列的视觉皮层还有 V2、V3、V4和V5,这些都做着更复杂的图像处理。如果大家对这方面想有更深入的了解,可以去看看这本书:神经计算原理/(美) Fredric M. Ham, Ivica Kostanic著 叶世伟, 王海娟译

2、计算机视觉模式识别-神经网络

1) 视觉模式识别的难度显而易见,现在如果让你尝试写一个计算机程序,以识别数字,你会觉得无从下手。神经网络以不同的方式解决问题。这个想法是采取大量的手写体数字,称为训练实例,然后开发一个系统,可以学习这些训练实例。换句话说,神经网络通过实例来自动推断识别手写数字的规则。此外,通过增加训练实例的数量,网络可以了解更多的手写规则,从而健壮网络提高其准确性。

这里会有一个很有趣的问题,你是否觉得训练样本足够多就能实现人工智能。

2)后续将编写一个程序实现一个神经网络,学习识别手写数字。程序只需74行长,并无使用其他神经库,但这个简短的程序可以识别的数字精度超过百分之96。在后续的博客中,改进方法,可以提高精度超过百分之99。

这里之所以用手写识别实例,因为它是一个很好的原型问题,可以作为我们学习的切入点,起始点。手写数字识别的确是具有挑战性,但它并没有想象中的那么困难,但你需要先构思一个解决方案,你的电脑要有很好的计算能力。我们会反复地回到手写识别的问题。在后面的学习中,我们将讨论如何将这些思想应用于计算机视觉中的其他问题,以及在语言、自然语言处理和其他领域中的应用。

3)当然,如果只写一个程序来识别手写体数字,那么博文将非常简短,对于初学者可能并不理解其中应用的理论思想!这一过程中,会设计很多神经网络的核心思想,包括2类重要类型的人工神经元(感知器和乙状结肠神经),以及神经网络的标准学习算法,称为随机梯度下降法(这个不了解的,建议去学习ufldl,链接地址:http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B)。在整个过程中,我将着重于解释为什么这样做,这和我们的神经网络区别及相似之处。在这样一个循序渐进的讨论、交流式的学习中,更深的理解神经网络,相信大家定将获益匪浅。最终理解的深度学习是什么,以及为什么它很重要。

瞎掰了几大段了,再接下来就是理论干货了,终于能进入正题了。

### 卷积神经网络手写数字识别中的理论基础 #### 1. 神经网络概述 神经网络是一种模仿生物神经系统工作原理的信息处理系统,在深度学习中扮演着核心角色。每一个神经网络由多个层次构成,每一层都包含了若干个节点(即人工神经元),这些节点通过加权连接相互关联。输入数据经过一系列线性和非线性的变换最终映射到输出空间。 #### 2. 卷积操作的意义 卷积运算作为卷积神经网络的核心组成部分之一,旨在提取图像局部特征的同时保留位置关系不变性。具体来说,通过对原始图片施加不同大小和形状的小窗口——滤波器(filter),并计算该区域内像素值与相应权重之间的乘积累加之和来完成一次卷积过程[^1]。 #### 3. 多层架构设计 为了更好地捕捉复杂模式,通常会堆叠多组交替排列的卷积层与下采样层(也称为池化层)形成深层结构。前者负责检测边缘、纹理等低级视觉特性;后者则用于降低维度减少参数量从而加快训练速度并防止过拟合现象发生。此外,全连接层位于最后几层用来分类预测类别标签[^3]。 #### 4. 应用实例分析 以MNIST数据库为例说明如何利用CNN实现高效准确的手写字体辨识任务。此公开数据集包含大量黑白灰度化的阿拉伯数码样本供研究者们测试模型性能指标如精度率(recall rate)、召回率(precision rate)以及F1得分(F1 score)[^2]。 ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=1000, shuffle=False) class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(7 * 7 * 16, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = x.view(-1, 7 * 7 * 16) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x model = CNN() loss_fn = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) for epoch in range(5): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = loss_fn(outputs, labels) loss.backward() optimizer.step() print('Finished Training') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值