【算法】Tiling a Rectangle with the Fewest Squares 铺瓷砖

文章讨论了如何使用深度优先搜索(DFS)解决用最少正方形瓷砖铺满nxm客厅的优化问题。这是一个NP-Complete问题,没有多项式时间的解。文中提到,当m=n时,一个正方形即可解决,否则需要通过DFS尝试不同大小的瓷砖,同时论文指出解决方案数量小于max(m,n)。提供的代码实现了一个DFS算法,用于探索所有可能的瓷砖布局并记录最小数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tiling a Rectangle with the Fewest Squares 铺瓷砖

问题描述:

房子的客厅大小为 n x m,为保持极简的风格,需要使用尽可能少的 正方形 瓷砖来铺盖地面。

假设正方形瓷砖的规格不限,边长都是整数。

请你帮设计师计算一下,最少需要用到多少块方形瓷砖?

n,m 范围[1,13]

分析

这是一个NP-Complete 问题, 至于什么是NP问题?我咨询了百度的文心一言,

【NP完全问题是一类复杂的问题,这些问题在多项式时间内没有任何已知的多项式时间算法。换句话说,即使您有一个解决方案,您也无法在多项式时间内验证它的正确性。NP完全问题包括3-SAT,图着色,哈密顿回路,独立集,旅行商问题等。
NP完全问题的难解性在于它们具有NP问题的两个特性:第一,它们可以在多项式时间内验证解决方案是否正确;第二,它们是NP困难的,这意味着不存在多项式时间算法来解决它们。
NP完全问题的难解性意味着,如果有一个NP完全问题可以在多项式时间内解决,那么所有NP问题都可以在多项式时间内解决。因此,解决NP完全问题被认为是计算复杂性的一个重大突破。】

这个问题,之前就看过,很多题解,说的貌似有道理,但是却又无法说明其解法的正确性,官解中给出了一个论文[Minimum tiling of a rectangle by squares],大概意思就是说,想要通过DP做递推解决这个问题,就不要想了。因为在特殊的情况下,你找到的状态转移方程是失效的,关键是这种特殊的情况,几乎没有规律。这也就导致了,DP在小范围内有效,但是在范围很大的情况下失效。

这就好像在陆地上生活的古人,以自己的生活经验,认为地球是平的,但是大范围内看地球不是平的。总结的规律也就失效了。

这也是NP问题为什么那么复杂的原因,如果你可以在P的时间规模内解决一个NP问题,那么你就是大牛。
回到问题,要求以最少的正方形来铺满,最小的正方形是边长为1。
h ( m , n ) 表示 m n 矩阵需要的正方形的最少数量 h(m,n)表示mn矩阵需要的正方形的最少数量 h(m,n)表示mn矩阵需要的正方形的最少数量.
论文给出的结论, h ( m , n ) < max ⁡ ( m , n ) h(m,n)<\max(m,n) h(m,n)<max(m,n),这个结论给出正方形数量的上限
使用朴素的思路,如果 m = = n m==n m==n,那么一个正方形就可以解决。否则就需要不停的尝试,这个探索的过程,就可以使用 D F S DFS DFS
为了保证覆盖每个部分,探索的流程,先行后列,而且探索到一个新区域,

  • 首先尝试使用允许的最大边长L来铺,然后减少一直到边长为 1 1 1.
  • 当铺完当前位置,需要把已铺的区域标记,同时移动到 [ x , y + L ] [x,y+L] [x,y+L],直到当前行完全铺完,然后进入下一行.

既然是递归回溯,那么在回溯的时候要去除标记

DFS的过程,就是探索每种铺设方案,并且记录其使用瓷砖的数量。

代码

class Solution {
    int ans;

    public int tilingRectangle(int n, int m) {
        ans = Math.max(n, m);
        boolean[][] rect = new boolean[n][m];
        dfs(0, 0, rect, 0);
        return ans;
    }

    public void dfs(int x, int y, boolean[][] rect, int cnt) {
        int n = rect.length, m = rect[0].length;
        if (cnt >= ans) {
            return;
        }        
        if (x >= n) {
            ans = cnt; 
            return;
        }
        /* 检测下一行 */        
        if (y >= m) {
            dfs(x + 1, 0, rect, cnt); 
            return;
        }        
        /* 如当前已经被覆盖,则直接尝试下一个位置 */
        if (rect[x][y]) {
            dfs(x, y + 1, rect, cnt);
            return;
        }
    
        for (int k = Math.min(n - x, m - y); k >= 1 && isAvailable(rect, x, y, k); k--) {
            /* 将长度为 k 的正方形区域标记覆盖 */
            fillUp(rect, x, y, k, true);
            /* 跳过 k 个位置开始检测 */
            dfs(x, y + k, rect, cnt + 1);
            fillUp(rect, x, y, k, false);
        }
    }

    public boolean isAvailable(boolean[][] rect, int x, int y, int k) {
        for (int i = 0; i < k; i++) {
            for (int j = 0; j < k; j++) {
                if (rect[x + i][y + j]) {
                    return false;
                }
            }
        }
        return true;
    }

    public void fillUp(boolean[][] rect, int x, int y, int k, boolean val) {
        for (int i = 0; i < k; i++){
            for (int j = 0; j < k; j++) {
                rect[x + i][y + j] = val;
            }
        }
    }
} 

时间复杂度 O ( 很大 ) O(很大) O(很大)

空间复杂度: O ( M N ) O(MN) O(MN) 递归栈空间未计算

Tag

Array backtracking

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eric.Cui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值