- 博客(32)
- 资源 (7)
- 收藏
- 关注
原创 Singleton的C++实现详解
SingletonThe Singleton Pattern: ensures a class has only one instance, and provides a global point of access to it.只有一个实例的类,如下是若干考虑: 首先,要产生类实例,需要调用构造函数。为了防止用户申明或者new一个类的实例,我们可以把这个类的构造函数设置为protected
2008-05-21 13:02:00 2660 1
原创 为什么要爱数学(写给小朋友)
我们的起步很简单,只需要连起来就行,你可以随便画,比如,你可以用笔,往前移动一段距离,然后画个圈,继续画,连到另一个点,等等。印度的释迦摩尼,在菩提树下打坐,他要参透人生,寻找世界的真理,孔子说,朝闻道,夕死可矣,还有很多我们知道,或者不知道的人,都在寻找真理。鸟能比人飞得高,牛比人有力气,猎豹的速度人望尘莫及,在物质的世界,有很多动物,在单项上,都比人类优雅。所以,如果你是一个追求智慧、追求完美、追求自由的人,那么,你应该爱数学,它能让你的头脑更加睿智,让你思维更懂得美,让你的心灵更加自由。
2024-11-03 18:10:01 28
原创 通俗范畴论11 对偶范畴与余积
最后,我们给出对偶范畴的定义,有了前面的铺垫,这个定义将非常自然:给定一个范畴CC,其对偶范畴通常记作CopCop或CoppositeCopposite数据:obCopobCop这个聚集和CC的对象聚集一样,即obCopobCobCopobCCopCop中 从 A 到 B 的态射聚集CopABCopAB是CC中从 B 到 A 的态射聚集CBACBA。
2024-08-26 21:20:08 109 1
原创 如何高效记录并整理编程学习笔记?
下面是笔者的笔记系统结构:git 备份系统,采用中心仓库管理笔记Vscode 写笔记笔记格式 Asciidoc。
2024-08-18 13:01:48 910 1
原创 Asciidoc 转化为 CSDN 帖子,完美数学公式
本文档记录 Asciidoc 转化与输出的实践经验。Asciidoc 转化为 CSDN 帖子,完美数学公式。
2024-08-17 20:59:33 669
原创 通俗范畴论10 泛性质(MD版)
既然泛性质可以在同构意义下唯一确定一个泛构造,那么我们就可以用泛性质来定义泛构造。我们回顾一下已经掌握的泛性质和泛构造。泛性质其实我们并不陌生,始对象和终对象,就是具有泛性质的对象,一个具有“始”的泛性质,一个具有“终”的泛性质。比如始对象,如果一个范畴里面有始对象,它到所有对象都有且只有一个态射,这样的对象可能有两个么?嗯,还真可能,但是这两个始对象同构,所以在同构意义下,它们可以看成一个,因此在同构意义下,始对象是唯一的。同理,终对象也一样。同构的始对象。
2024-08-17 13:33:31 190
原创 通俗范畴论10 泛性质
既然泛性质可以在同构意义下唯一确定一个泛构造,那么我们就可以用泛性质来定义泛构造。我们回顾一下已经掌握的泛性质和泛构造。泛性质其实我们并不陌生,始对象和终对象,就是具有泛性质的对象,一个具有“始”的泛性质,一个具有“终”的泛性质。比如始对象,如果一个范畴里面有始对象,它到所有对象都有且只有一个态射,这样的对象可能有两个么?嗯,还真可能,但是这两个始对象同构,所以在同构意义下,它们可以看成一个,因此在同构意义下,始对象是唯一的。同理,终对象也一样。Figure 1. 同构的始对象。
2024-08-08 17:13:24 81
原创 通俗范畴论9 态射的类型
那么,同构态射是一种什么样的态射,如何定义呢?请看下图:在上面这个母范畴中,如果 A、B 同构,那么,站在 A 的角度,我们希望,从 A 出发,经过 f 和 g,转一圈回来,A 还是 “原来的” A,这个怎么表达呢?我们可以这样表达:g∘f=IdA𝑔∘𝑓=𝐼𝑑𝐴,因为 IdA 是恒等态射,所以这个表达是准确的。我们从 A 出发,经过 f,到达 B,然后 g 把我们又带回了 A,而且整个复合的效果等于 IdA,g 就如同一个反操作,完全取消了 f 的效果。
2024-07-20 00:23:33 100
原创 通俗范畴论8 始对象与终对象
范畴C中的对象I,是始对象,当且仅当:∀A∈C,∃!我们在前文范畴的定义部分,给出了范畴的定义,范畴的定义本身,不依赖于集合论,它是公理化的,可以作为逻辑的起点,对于这个范畴的定义,因为它不依赖于已有的数学概念,因此我们给它取个名字,叫做母范畴(Meta Category)。如果 A是非空集合:因为 Set𝑆𝑒𝑡 包含所有集合对象,所以,我们总可以找到一个集合 B,使得 |B|>1|𝐵|>1,因为 |A|≥1|𝐴|≥1,所以:|B||A|≥2|𝐵||𝐴|≥2,因此任何非空集合都不可能是始对象。
2024-07-11 08:26:09 90
原创 通俗范畴论7 Set 集合函数范畴
我们初中就学过函数的概念,这里,我们将对函数进行重新发现。函数设 A 和 B 是任何集合,一个函数 A→fB𝐴→𝑓𝐵, 将 A 中的每一个元素 a 对应到 B 中的一个元素 f(a)。其中 A 叫做定义域(Domain),B 叫做陪域(Codomain)。从上述定义,我们可以看出,在集合 A 和 B 之间所有有序对 (a,f(a)) 构成的集合,就是函数 A→fB𝐴→𝑓𝐵。对于任何元素 a 属于 集合 A,在函数 f 中,以 a 打头的有序对 (a,_) 只有一个。
2024-07-01 11:45:08 585
原创 通俗范畴论6 基于关系的范畴
关系范畴(Category of Relations),通常被称为 Rel𝑅𝑒𝑙:Figure 6. 关系范畴对象(Objects):对象是集合态射(Morphisms):态射是定义在两个集合之间的关系。如果 A 和 B 是两个集合,那么从 A 到 B 的态射是一个关系 R⊆A×B,其中 R 是 A 和 B 的笛卡尔积的子集。
2024-06-27 15:49:52 86
原创 通俗范畴论5 范畴实例
其次,这个范畴包括了所有的集合,因此ob(Set)𝑜𝑏(𝑆𝑒𝑡),即该范畴所有对象的全体,是一个聚集,不是一个集合。在前一部分,我们看到,为了让范畴的定义适应尽可能多的情况,同时在定义时外部依赖最小,对于一个范畴,其对象的全体 ob(C)𝑜𝑏(𝐶)和任意 对象A 到 对象B 态射的全体 C(A,B)𝐶(𝐴,𝐵) 都定义为了聚集(Collection)。我们把这个构造出的范畴,取个名字,叫做Cat𝐶𝑎𝑡。所有集合构成的范畴,该范畴的对象是集合,态射是集合间的函数,态射的复合是函数的复合,又名集合函数范畴。
2024-06-26 00:14:51 72
原创 通俗范畴论4 范畴的定义
上一节我们在没有引入范畴这个数学概念的情况下,直接体验了一个“苹果1”范畴,建立了一个对范畴的直观。本节我们正式学习范畴的定义和基本性质。一个范畴(Category) C𝐶,由以下部分组成:数据:对象(Objects):包含若干个对象(Objects),这些对象的全体构成一个聚集(Collection),这个聚集记为 ob(C)𝑜𝑏(𝐶)
2024-06-24 12:09:04 211
原创 通俗范畴论3 从特指对象到对象
事实上,范畴论对象可以理解为一个静态的东西,对于苹果1,只要上图不变,苹果1对象就不变。我们从Id苹果1箭头的起点,也就是苹果1(源对象)出发,箭头就是求这个起点的对应对象(目标对象),这个起点的对应对象在箭头的终点,终点对象的名字叫苹果1,所以,源对象和目标对象同一,即源对象和目标对象是同一个对象。对象,即使世界上没有符合要求的苹果存在,苹果1作为一个范畴论对象实体,仍然存在,即,苹果1是:小丽喜欢的、小明购买的,可以称出重量,能做苹果酱的、能咬一口的东西,这个结构仍然存在,即上面的图的含义仍然存在。
2024-06-21 10:47:13 91
原创 通俗范畴论2 有向图与准范畴
退一步海阔天空,在正式进入范畴论之前,我们可以重新审视一下我们是如何认识世界的,有了这个对人类认识世界过程的底层理解,可以帮助我们更好地理解范畴论。对于人类认识世界,最神奇的一点就是这个世界居然是可以认识的,我们可以用自然语言描述它、我们可以用数学公式表示它,当然我们也可以用二维的图画描摹它,我们也可以把它看成三维的空间加一维的时间,也可以将三维空间和时间看成一体的,从而我们的世界是四维时空。
2024-06-16 14:21:33 235
原创 通俗范畴论1 范畴论的由来
要简单地说明,什么是范畴论,英国数学家、教育家尤金妮娅·程,有这样一句话:范畴论是数学中的数学。为什么范畴论是数学中的数学呢?就好比世界上所有的居所,甚至包括动物的居所哦,都有一个入口一样,数学的各个分支如果互相比较,总有一些相似的地方,如果我们把数学的不同分支看作不同的结构,那么就是说数学的各个分支,都有着一些相似的结构。而范畴论可以很好地描述不同数学分支中相似的结构,因此,我们可以将范畴论看作是数学中的数学。
2024-06-16 14:11:23 118 1
原创 第十篇 Asciidoc 给文章编号 解决标题编号的问题
嗯,你的理解没错,区段就是HTML里面的标题一到标题六的等价物,区段规定了文档的结构,因此它决定了文档的目录(Toc:Table of Content)。Article是adoc文档的默认类型,就是说,当你不设置你的文档类型时,默认情况下,你的adoc文件的文档类型就是Article。从文档头开始的位置,在上例中是第一行开始,往下遇到的第一个空行,是文档头的结束位置,之后就是文档的主体,也就是Body部分了。在上述四种类型中,Aritcle类型,指的是短文类型,也是我们最常用的类型,我们先重点看一看。
2024-05-17 18:44:07 1023
原创 第九篇 Asciidoc 用属性控制文档的呈现 图表标题中文显示
如果您使用 Asciidoc 进行严肃写作,比如,写一本书,那么您不可避免需要对图表编号,因为 Asciidoc 的默认呈现是 英文,所以它图表标题是英文,如下图所示:图 1. 范畴论函子Figure 1.,用的英文,您想把它改为中文,怎么办呢?
2024-05-16 17:10:50 776
原创 第八篇 Asciidoc 输出 All In One HTML 解决图片无法显示问题
小明使用 Asciidoc 来记笔记,他将笔记输出为 HTML 文件。小丽向小明借笔记。小明将 Asciidoc 笔记输出为 HTML文件,并拷贝给了小丽。但是,小丽发现,图片都显示不出来了。小丽:小明,你给我的笔记,图片都显示不出来啊。小明:是我给你的那个 HTML 文件吗?小丽:是的。小明:哦,我忘记拷贝 HTML 文件依赖的图片了。等我重新整理一下,再发给你。说完,小明犯了难,因为这些 HTML 文件涉及多个本地的图片,要把它们都挑选出来,还真是麻烦。
2024-05-15 09:43:15 378
原创 第七篇 Asciidoc中使用PlantUML 绘制各种示意图
示意图表示的是大体上描述或表示物体的形状、相对大小、物体与物体之间的联系(关系),描述某器材或某机械的大体结构和工作的基本原理,描述某个工艺过程简单图示都叫做示意图。示意图的特点就是简单明了,它突出了重点,忽略很多次要的细节。老师上课时在黑板上经常画的某物体或某结构的简图都属于示意图。— 百度知道这个定义并不精确,严格说,示意图是将作者的抽象思维映射成的图示。相对于画作,示意图重在达意,而非摹形。在现代工程领域,示意图是最主要的交流手段之一。
2024-05-14 16:03:57 902
原创 第六篇 Asciidoc 图片按行排
如果把要显示的内容看成一个集合,那么每一个内容都可以看成一个盒子,盒子与盒子的关系只可能有三种:上下关系(按列排),也就是一个内容在上,一个内容在下左右关系(按行排),也就是一个在左,一个在右,如果排满了一行,就接着排下一行包含关系(一个是容器,另一个是容器里面的一个元素):例如,相框套照片上述逻辑,对于熟悉 HTML 的小伙伴,并不是什么新概念,就是 Block元素 和 inline元素,即块元素和行内元素。
2024-05-13 14:49:35 326 1
原创 第五篇 Asciidoc 插入图片文件夹太乱?指定图片文件夹,一篇解决
假设您的图片在剪贴板,这里有个窍门,按 Ctrl + Alt + V,直接插入图片到adoc文档。此时,vscode的asciidoc插件会将剪贴板图片,自动保存到您指定的目录下,比如 images。,点表示文档所在的目录,斜杠表示之下,images表示一个目录的名字。嗯,的确有点乱,主要是目录下的图片太多了,找adoc文档要拖动列表,如何指定插入列表所用的目录呢?上面的代码,属性是 imagesdir,写的时候要用冒号围起来,然后空格,之后是你指定的目录路径。图片由示意图生成:参见本系列文章。
2024-05-10 13:53:35 683
原创 第四篇 Asciidoc - MindMap 思维导图 不是事
因此,笔者的做法是,维护一个文档,里面有各种图表的代码,需要画新图的时候,复制粘贴一个已有的,然后修改。我们的目录结构、模块结构、分类结构等等,都是树型结构,它非常普遍,因此 MindMap 是笔记软件中,获得最多支持的一种图。中间的代码,你可以写你的 MindMap层级,*号的多少表示层级,一个星号表示一级,两个星号表示二级,等等,依次类推。便于修改:因为示意图是一段代码,所以,您可以随时修改,立即得到新版本,无须去修图。精确地说,这类图,是对思维结构的一种映射,因此叫做 Diagram,即示意图。
2024-05-09 08:01:49 403 1
原创 第三篇 Asciidoc的正确打开方式 Vscode中使用Asciidoc
在浏览器中 Asciidoc 文件,仅仅是编辑 Asciidoc 文件的若干方法之一。它的缺点是插入图片需要到别的地方找图床,这就很不方便。我们都有自己熟悉的文本编辑器,或者集成开发环境(IDE)。在自己喜欢的 IDE 中,编辑 Asciidoc 文件,然后实时预览,岂不美哉?
2024-05-06 22:16:33 2238
原创 第二篇 5分钟上手Asciidoc - 使用初体验,编辑文档常用姿势
这篇是 Asciidoc 的快速入门文章。让我们将注意力集中到 Asciidoc 的核心语法。忽略一些操作上的次要细节。您可能想在本篇看到,如何安装和配置编译器,如何安装插件,如何插入图片、表格等等,总之你可能会想很多东西,于是得出结论,这个东西不能在5分钟内学会。但是安装和配置 Asciidoc 都有文档可查,插件的安装和配置也有文档可查,我们何不单刀直入,直指核心呢?所以本篇要讲的两个问题是:文档写作的最小功能子集最小功能子集的 Asciidoc 语法。
2024-05-05 07:44:43 1137 3
原创 第一篇 Asciidoc - 程序员如何写作?专注内容,格式让系统去完成
自从人类有了文字,知识的传播主要靠两种方式:直接经验:就是从实际动手获得知识间接经验:通过间接信息,例如经过整理的 文字、图片、声音获得知识对于程序员,乃至于需要大量文字工作的工作者,写作工具,无疑是重要的。古语有云:工欲望善其事,必先利其器。到目前为止,可以说,文字仍然是知识传播的最主要手段,因为它是符号化的,类似代数,在代数中,我们用一个符号代替数字;在文字中,我们用符号代替对世界的描述。文字的这种抽象性,使得它可以高度抽象,概括信息到一个很小的空间,相对于其他媒体,具有不可比拟的优势。
2024-05-04 22:40:11 1099 1
原创 番外篇 CSDN编辑器的使用 - 解决本地编辑帖子再上传CSDN问题
CSDN编辑器是CSDN网站提供的在线编辑器,用于编写和发布文章、代码等。它有两种编辑模式:富文本编辑器:即所见即所得编辑器,用户可以直接编辑文本内容,并实时预览效果。用户需要输入内容并设置内容的呈现样式。MD编辑器:即MarkDown编辑器,用户使用MarkDown标记语言,输入内容并标记内容的语义,编辑器负责排版。这样就省去了在界面里设置格式的麻烦。一份MarkDown文本粘贴进去,格式就排好了。如上图所示,在左边用户可以输入 MD 内容,右边就是预览。
2024-05-03 15:53:52 596 1
原创 本地化AI应用初探 - 无须 Docker,个人资料无须上传平台,本地AI化
本地AI why, when, how, LM Studio, Stable Diffusion, AnythingLLM
2024-04-30 12:31:19 779
原创 golang interface 接口的使用与作用
先看程序:funcstringReader(){reader:=strings.NewReader("Thisisatextmessagethatusedtoteststringreader.")p:=make([]byte,4)for{n,err:=reader.Read(p)iferr!=...
2019-10-28 20:23:12 1326 1
原创 golang Gorm与数据库完整性约束
数据库约束要点:主键约束(非空且唯一)外键约束子表外键字段的值必须在主表被参照字段值得范围内,或者为NULL;外键参照的必须是主表的主键或唯一键;主表主键/唯一键被子表参照时,主表相应记录不允许被删除在golang中,采用orm对数据库进行建模是比较方便的。grom是其中一个比较流行的orm工具。本篇基于golang、grom1.91、和PostgreSQL来进行说明。注:本文的例子是极端情况,...
2018-07-07 04:26:40 19500 1
PlantUML 语言参考
2024-05-14
negroni README
2018-07-01
gin-web-framework
2018-07-01
Building Go Web Applications and Microservices Using Gin - Semaphore
2018-07-01
Golang中使用 JWT认证来 保障Restful JSON API的安全(英文) - 推酷
2017-11-22
Go Web 编程中文版2015.7月版
2015-07-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人