自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 资源 (7)
  • 收藏
  • 关注

原创 Singleton的C++实现详解

SingletonThe Singleton Pattern: ensures a class has only one instance, and provides a global point of access to it.只有一个实例的类,如下是若干考虑: 首先,要产生类实例,需要调用构造函数。为了防止用户申明或者new一个类的实例,我们可以把这个类的构造函数设置为protected

2008-05-21 13:02:00 2660 1

原创 为什么要爱数学(写给小朋友)

我们的起步很简单,只需要连起来就行,你可以随便画,比如,你可以用笔,往前移动一段距离,然后画个圈,继续画,连到另一个点,等等。印度的释迦摩尼,在菩提树下打坐,他要参透人生,寻找世界的真理,孔子说,朝闻道,夕死可矣,还有很多我们知道,或者不知道的人,都在寻找真理。鸟能比人飞得高,牛比人有力气,猎豹的速度人望尘莫及,在物质的世界,有很多动物,在单项上,都比人类优雅。所以,如果你是一个追求智慧、追求完美、追求自由的人,那么,你应该爱数学,它能让你的头脑更加睿智,让你思维更懂得美,让你的心灵更加自由。

2024-11-03 18:10:01 28

原创 通俗范畴论11 对偶范畴与余积

最后,我们给出对偶范畴的定义,有了前面的铺垫,这个定义将非常自然:给定一个范畴CC,其对偶范畴通常记作CopCop或CoppositeCopposite数据:obCopobCop这个聚集和CC的对象聚集一样,即obCopobCobCopobCCopCop中 从 A 到 B 的态射聚集CopABCopAB是CC中从 B 到 A 的态射聚集CBACBA。

2024-08-26 21:20:08 109 1

原创 如何高效记录并整理编程学习笔记?

下面是笔者的笔记系统结构:git 备份系统,采用中心仓库管理笔记Vscode 写笔记笔记格式 Asciidoc。

2024-08-18 13:01:48 910 1

原创 Asciidoc 转化为 CSDN 帖子,完美数学公式

本文档记录 Asciidoc 转化与输出的实践经验。Asciidoc 转化为 CSDN 帖子,完美数学公式。

2024-08-17 20:59:33 669

原创 通俗范畴论10 泛性质(MD版)

既然泛性质可以在同构意义下唯一确定一个泛构造,那么我们就可以用泛性质来定义泛构造。我们回顾一下已经掌握的泛性质和泛构造。泛性质其实我们并不陌生,始对象和终对象,就是具有泛性质的对象,一个具有“始”的泛性质,一个具有“终”的泛性质。比如始对象,如果一个范畴里面有始对象,它到所有对象都有且只有一个态射,这样的对象可能有两个么?嗯,还真可能,但是这两个始对象同构,所以在同构意义下,它们可以看成一个,因此在同构意义下,始对象是唯一的。同理,终对象也一样。同构的始对象。

2024-08-17 13:33:31 190

原创 通俗范畴论10 泛性质

既然泛性质可以在同构意义下唯一确定一个泛构造,那么我们就可以用泛性质来定义泛构造。我们回顾一下已经掌握的泛性质和泛构造。泛性质其实我们并不陌生,始对象和终对象,就是具有泛性质的对象,一个具有“始”的泛性质,一个具有“终”的泛性质。比如始对象,如果一个范畴里面有始对象,它到所有对象都有且只有一个态射,这样的对象可能有两个么?嗯,还真可能,但是这两个始对象同构,所以在同构意义下,它们可以看成一个,因此在同构意义下,始对象是唯一的。同理,终对象也一样。Figure 1. 同构的始对象。

2024-08-08 17:13:24 81

原创 通俗范畴论9 态射的类型

那么,同构态射是一种什么样的态射,如何定义呢?请看下图:在上面这个母范畴中,如果 A、B 同构,那么,站在 A 的角度,我们希望,从 A 出发,经过 f 和 g,转一圈回来,A 还是 “原来的” A,这个怎么表达呢?我们可以这样表达:g∘f=IdA𝑔∘𝑓=𝐼𝑑𝐴,因为 IdA 是恒等态射,所以这个表达是准确的。我们从 A 出发,经过 f,到达 B,然后 g 把我们又带回了 A,而且整个复合的效果等于 IdA,g 就如同一个反操作,完全取消了 f 的效果。

2024-07-20 00:23:33 100

原创 通俗范畴论8 始对象与终对象

范畴C中的对象I,是始对象,当且仅当:∀A∈C,∃!我们在前文范畴的定义部分,给出了范畴的定义,范畴的定义本身,不依赖于集合论,它是公理化的,可以作为逻辑的起点,对于这个范畴的定义,因为它不依赖于已有的数学概念,因此我们给它取个名字,叫做母范畴(Meta Category)。如果 A是非空集合:因为 Set𝑆𝑒𝑡 包含所有集合对象,所以,我们总可以找到一个集合 B,使得 |B|>1|𝐵|>1,因为 |A|≥1|𝐴|≥1,所以:|B||A|≥2|𝐵||𝐴|≥2,因此任何非空集合都不可能是始对象。

2024-07-11 08:26:09 90

原创 通俗范畴论7 Set 集合函数范畴

我们初中就学过函数的概念,这里,我们将对函数进行重新发现。函数设 A 和 B 是任何集合,一个函数 A→fB𝐴→𝑓𝐵, 将 A 中的每一个元素 a 对应到 B 中的一个元素 f(a)。其中 A 叫做定义域(Domain),B 叫做陪域(Codomain)。从上述定义,我们可以看出,在集合 A 和 B 之间所有有序对 (a,f(a)) 构成的集合,就是函数 A→fB𝐴→𝑓𝐵。对于任何元素 a 属于 集合 A,在函数 f 中,以 a 打头的有序对 (a,_) 只有一个。

2024-07-01 11:45:08 585

原创 通俗范畴论6 基于关系的范畴

关系范畴(Category of Relations),通常被称为 Rel𝑅𝑒𝑙:Figure 6. 关系范畴对象(Objects):对象是集合态射(Morphisms):态射是定义在两个集合之间的关系。如果 A 和 B 是两个集合,那么从 A 到 B 的态射是一个关系 R⊆A×B,其中 R 是 A 和 B 的笛卡尔积的子集。

2024-06-27 15:49:52 86

原创 通俗范畴论5 范畴实例

其次,这个范畴包括了所有的集合,因此ob(Set)𝑜𝑏(𝑆𝑒𝑡),即该范畴所有对象的全体,是一个聚集,不是一个集合。在前一部分,我们看到,为了让范畴的定义适应尽可能多的情况,同时在定义时外部依赖最小,对于一个范畴,其对象的全体 ob(C)𝑜𝑏(𝐶)和任意 对象A 到 对象B 态射的全体 C(A,B)𝐶(𝐴,𝐵) 都定义为了聚集(Collection)。我们把这个构造出的范畴,取个名字,叫做Cat𝐶𝑎𝑡。所有集合构成的范畴,该范畴的对象是集合,态射是集合间的函数,态射的复合是函数的复合,又名集合函数范畴。

2024-06-26 00:14:51 72

原创 通俗范畴论4 范畴的定义

上一节我们在没有引入范畴这个数学概念的情况下,直接体验了一个“苹果1”范畴,建立了一个对范畴的直观。本节我们正式学习范畴的定义和基本性质。一个范畴(Category) C𝐶,由以下部分组成:数据:对象(Objects):包含若干个对象(Objects),这些对象的全体构成一个聚集(Collection),这个聚集记为 ob(C)𝑜𝑏(𝐶)

2024-06-24 12:09:04 211

原创 通俗范畴论3 从特指对象到对象

事实上,范畴论对象可以理解为一个静态的东西,对于苹果1,只要上图不变,苹果1对象就不变。我们从Id苹果1箭头的起点,也就是苹果1(源对象)出发,箭头就是求这个起点的对应对象(目标对象),这个起点的对应对象在箭头的终点,终点对象的名字叫苹果1,所以,源对象和目标对象同一,即源对象和目标对象是同一个对象。对象,即使世界上没有符合要求的苹果存在,苹果1作为一个范畴论对象实体,仍然存在,即,苹果1是:小丽喜欢的、小明购买的,可以称出重量,能做苹果酱的、能咬一口的东西,这个结构仍然存在,即上面的图的含义仍然存在。

2024-06-21 10:47:13 91

原创 通俗范畴论2 有向图与准范畴

退一步海阔天空,在正式进入范畴论之前,我们可以重新审视一下我们是如何认识世界的,有了这个对人类认识世界过程的底层理解,可以帮助我们更好地理解范畴论。对于人类认识世界,最神奇的一点就是这个世界居然是可以认识的,我们可以用自然语言描述它、我们可以用数学公式表示它,当然我们也可以用二维的图画描摹它,我们也可以把它看成三维的空间加一维的时间,也可以将三维空间和时间看成一体的,从而我们的世界是四维时空。

2024-06-16 14:21:33 235

原创 通俗范畴论1 范畴论的由来

要简单地说明,什么是范畴论,英国数学家、教育家尤金妮娅·程,有这样一句话:范畴论是数学中的数学。为什么范畴论是数学中的数学呢?就好比世界上所有的居所,甚至包括动物的居所哦,都有一个入口一样,数学的各个分支如果互相比较,总有一些相似的地方,如果我们把数学的不同分支看作不同的结构,那么就是说数学的各个分支,都有着一些相似的结构。而范畴论可以很好地描述不同数学分支中相似的结构,因此,我们可以将范畴论看作是数学中的数学。

2024-06-16 14:11:23 118 1

原创 第十篇 Asciidoc 给文章编号 解决标题编号的问题

嗯,你的理解没错,区段就是HTML里面的标题一到标题六的等价物,区段规定了文档的结构,因此它决定了文档的目录(Toc:Table of Content)。Article是adoc文档的默认类型,就是说,当你不设置你的文档类型时,默认情况下,你的adoc文件的文档类型就是Article。从文档头开始的位置,在上例中是第一行开始,往下遇到的第一个空行,是文档头的结束位置,之后就是文档的主体,也就是Body部分了。在上述四种类型中,Aritcle类型,指的是短文类型,也是我们最常用的类型,我们先重点看一看。

2024-05-17 18:44:07 1023

原创 第九篇 Asciidoc 用属性控制文档的呈现 图表标题中文显示

如果您使用 Asciidoc 进行严肃写作,比如,写一本书,那么您不可避免需要对图表编号,因为 Asciidoc 的默认呈现是 英文,所以它图表标题是英文,如下图所示:图 1. 范畴论函子Figure 1.,用的英文,您想把它改为中文,怎么办呢?

2024-05-16 17:10:50 776

原创 第八篇 Asciidoc 输出 All In One HTML 解决图片无法显示问题

小明使用 Asciidoc 来记笔记,他将笔记输出为 HTML 文件。小丽向小明借笔记。小明将 Asciidoc 笔记输出为 HTML文件,并拷贝给了小丽。但是,小丽发现,图片都显示不出来了。小丽:小明,你给我的笔记,图片都显示不出来啊。小明:是我给你的那个 HTML 文件吗?小丽:是的。小明:哦,我忘记拷贝 HTML 文件依赖的图片了。等我重新整理一下,再发给你。说完,小明犯了难,因为这些 HTML 文件涉及多个本地的图片,要把它们都挑选出来,还真是麻烦。

2024-05-15 09:43:15 378

原创 第七篇 Asciidoc中使用PlantUML 绘制各种示意图

示意图表示的是大体上描述或表示物体的形状、相对大小、物体与物体之间的联系(关系),描述某器材或某机械的大体结构和工作的基本原理,描述某个工艺过程简单图示都叫做示意图。示意图的特点就是简单明了,它突出了重点,忽略很多次要的细节。老师上课时在黑板上经常画的某物体或某结构的简图都属于示意图。— 百度知道这个定义并不精确,严格说,示意图是将作者的抽象思维映射成的图示。相对于画作,示意图重在达意,而非摹形。在现代工程领域,示意图是最主要的交流手段之一。

2024-05-14 16:03:57 902

原创 第六篇 Asciidoc 图片按行排

如果把要显示的内容看成一个集合,那么每一个内容都可以看成一个盒子,盒子与盒子的关系只可能有三种:上下关系(按列排),也就是一个内容在上,一个内容在下左右关系(按行排),也就是一个在左,一个在右,如果排满了一行,就接着排下一行包含关系(一个是容器,另一个是容器里面的一个元素):例如,相框套照片上述逻辑,对于熟悉 HTML 的小伙伴,并不是什么新概念,就是 Block元素 和 inline元素,即块元素和行内元素。

2024-05-13 14:49:35 326 1

原创 第五篇 Asciidoc 插入图片文件夹太乱?指定图片文件夹,一篇解决

假设您的图片在剪贴板,这里有个窍门,按 Ctrl + Alt + V,直接插入图片到adoc文档。此时,vscode的asciidoc插件会将剪贴板图片,自动保存到您指定的目录下,比如 images。,点表示文档所在的目录,斜杠表示之下,images表示一个目录的名字。嗯,的确有点乱,主要是目录下的图片太多了,找adoc文档要拖动列表,如何指定插入列表所用的目录呢?上面的代码,属性是 imagesdir,写的时候要用冒号围起来,然后空格,之后是你指定的目录路径。图片由示意图生成:参见本系列文章。

2024-05-10 13:53:35 683

原创 第四篇 Asciidoc - MindMap 思维导图 不是事

因此,笔者的做法是,维护一个文档,里面有各种图表的代码,需要画新图的时候,复制粘贴一个已有的,然后修改。我们的目录结构、模块结构、分类结构等等,都是树型结构,它非常普遍,因此 MindMap 是笔记软件中,获得最多支持的一种图。中间的代码,你可以写你的 MindMap层级,*号的多少表示层级,一个星号表示一级,两个星号表示二级,等等,依次类推。便于修改:因为示意图是一段代码,所以,您可以随时修改,立即得到新版本,无须去修图。精确地说,这类图,是对思维结构的一种映射,因此叫做 Diagram,即示意图。

2024-05-09 08:01:49 403 1

原创 第三篇 Asciidoc的正确打开方式 Vscode中使用Asciidoc

在浏览器中 Asciidoc 文件,仅仅是编辑 Asciidoc 文件的若干方法之一。它的缺点是插入图片需要到别的地方找图床,这就很不方便。我们都有自己熟悉的文本编辑器,或者集成开发环境(IDE)。在自己喜欢的 IDE 中,编辑 Asciidoc 文件,然后实时预览,岂不美哉?

2024-05-06 22:16:33 2238

原创 第二篇 5分钟上手Asciidoc - 使用初体验,编辑文档常用姿势

这篇是 Asciidoc 的快速入门文章。让我们将注意力集中到 Asciidoc 的核心语法。忽略一些操作上的次要细节。您可能想在本篇看到,如何安装和配置编译器,如何安装插件,如何插入图片、表格等等,总之你可能会想很多东西,于是得出结论,这个东西不能在5分钟内学会。但是安装和配置 Asciidoc 都有文档可查,插件的安装和配置也有文档可查,我们何不单刀直入,直指核心呢?所以本篇要讲的两个问题是:文档写作的最小功能子集最小功能子集的 Asciidoc 语法。

2024-05-05 07:44:43 1137 3

原创 第一篇 Asciidoc - 程序员如何写作?专注内容,格式让系统去完成

自从人类有了文字,知识的传播主要靠两种方式:直接经验:就是从实际动手获得知识间接经验:通过间接信息,例如经过整理的 文字、图片、声音获得知识对于程序员,乃至于需要大量文字工作的工作者,写作工具,无疑是重要的。古语有云:工欲望善其事,必先利其器。到目前为止,可以说,文字仍然是知识传播的最主要手段,因为它是符号化的,类似代数,在代数中,我们用一个符号代替数字;在文字中,我们用符号代替对世界的描述。文字的这种抽象性,使得它可以高度抽象,概括信息到一个很小的空间,相对于其他媒体,具有不可比拟的优势。

2024-05-04 22:40:11 1099 1

原创 我需要一个家庭服务器么?

本篇介绍了家庭服务器的概念、选型、构成和样例,希望对你有所帮助。欢迎持续关注本频道。

2024-05-04 16:03:49 586 1

原创 番外篇 CSDN编辑器的使用 - 解决本地编辑帖子再上传CSDN问题

CSDN编辑器是CSDN网站提供的在线编辑器,用于编写和发布文章、代码等。它有两种编辑模式:富文本编辑器:即所见即所得编辑器,用户可以直接编辑文本内容,并实时预览效果。用户需要输入内容并设置内容的呈现样式。MD编辑器:即MarkDown编辑器,用户使用MarkDown标记语言,输入内容并标记内容的语义,编辑器负责排版。这样就省去了在界面里设置格式的麻烦。一份MarkDown文本粘贴进去,格式就排好了。如上图所示,在左边用户可以输入 MD 内容,右边就是预览。

2024-05-03 15:53:52 596 1

原创 也谈程序员缓解工作压力的窍门 - 底层逻辑

程序员如何看待工作压力和如何缓解工作压力

2024-04-30 22:14:35 904

原创 本地化AI应用初探 - 无须 Docker,个人资料无须上传平台,本地AI化

本地AI why, when, how, LM Studio, Stable Diffusion, AnythingLLM

2024-04-30 12:31:19 779

原创 golang interface 接口的使用与作用

先看程序:funcstringReader(){reader:=strings.NewReader("Thisisatextmessagethatusedtoteststringreader.")p:=make([]byte,4)for{n,err:=reader.Read(p)iferr!=...

2019-10-28 20:23:12 1326 1

原创 golang Gorm与数据库完整性约束

数据库约束要点:主键约束(非空且唯一)外键约束子表外键字段的值必须在主表被参照字段值得范围内,或者为NULL;外键参照的必须是主表的主键或唯一键;主表主键/唯一键被子表参照时,主表相应记录不允许被删除在golang中,采用orm对数据库进行建模是比较方便的。grom是其中一个比较流行的orm工具。本篇基于golang、grom1.91、和PostgreSQL来进行说明。注:本文的例子是极端情况,...

2018-07-07 04:26:40 19500 1

PlantUML 语言参考

PlantUML_Language_Reference_Guide_en 介绍了使用 PlantUML绘制各种示意图,PlantUML 是您绘制 分工图、头脑风暴图、用例图、时序图等的好工具 PlantUML是一个开源的UML图绘制工具,它允许用户通过纯文本描述来创建UML图形。这种方式不仅提高了绘图的效率,还便于将图形描述与源代码一起存储在版本控制系统中

2024-05-14

negroni README

negroni.Classic() 提供一些默认的中间件,这些中间件在多数应用都很有用。 negroni.Recovery ‐ 异常(恐慌)恢复中间件 negroni.Logging ‐ 请求 / 响应 log 日志中间件 negroni.Static ‐ 静态文件处理中间件,默认目录在 "public" 下. negroni.Classic() 让你一开始就非常容易上手 Negroni ,并使用它那些通用的功能。

2018-07-01

gin-web-framework

Gin is a HTTP web framework written in Go (Golang). It features a Martini-like API with much better performance -- up to 40 times faster. If you need smashing performance, get yourself some Gin. https://gin-gonic.github.io/gin/

2018-07-01

Building Go Web Applications and Microservices Using Gin - Semaphore

In this tutorial, you will learn how to build traditional web applications and microservices in Go using the Gin framework. Gin is a framework which reduces boilerplate code that would normally go into building these applications. It also lends itself very well to creating reusable and extensible pieces of code. This part of the tutorial will help you set up your project and build a simple application using Gin that will display a list of articles and the article details page.

2018-07-01

Golang中使用 JWT认证来 保障Restful JSON API的安全(英文) - 推酷

Golang中使用 JWT认证来 保障Restful JSON API的安全(英文) - 推酷

2017-11-22

Passwordless Authentication With Golang

Passwordless Authentication With Golang

2017-11-22

Go Web 编程中文版2015.7月版

Go Web 编程中文版2015.7月版,网上的版本是老的,astixie的git上的md在不断更新,根据那个版本重做了一版,发扬astixie的共享精神,与大家分享。

2015-07-03

Behavior trees for AI

Behavior trees for AI_ How they work

2015-01-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除